Физиология зрения. Преломление света

Обновлено: 17.05.2024

Физиология зрения, аномалии зрения. Глаз, являясь рецепторной частью зрительного анализатора, воспринимает объекты внешнего мира посредством улавливания отражае­мого или излучаемого объектами света. У человека световые колебания в диапазоне длин волн 390-760 нм (нанометр - одна миллиардная доля метра - 10"9 м) воспринимаются фоторецепторами глаза. Нервное возбуждение через проводящие (промежуточные) пути зрительного анализатора: бипо­лярные, ганглиозные клетки, ядра таламуса, латеральных коленчатых тел или верхних холмиков четверохолмия поступает в высший корковый от­дел - затылочную долю большого мозга, где возникает зрительное ощуще­ние (рис. № 195).

Для хорошего зрения необходимо прежде всего четкое изображение (фокусирование) рассматриваемого предмета на сетчатке. Способность глаз к ясному видению разноудаленных предметов называется аккомода­цией. Она осуществляется путем изменения кривизны хрусталика и его преломляющей способности. Механизм аккомодации глаза связан с со­кращением ресничной мышцы, которая изменяет выпуклость хрусталика. Преломление света в оптической системе глаза называется рефракцией. Клиническую рефракцию характеризует положение главного фокуса по отношению к сетчатке. Если главный фокус совпадает с сетчаткой, такая рефракция называется соразмерной - эмметропией (греч. emmetros - со­размерный и ops - глаз). Если главный фокус не совпадает с сетчаткой, то клиническая рефракция несоразмерная - аметропия. Существует две глав­ные аномалии рефракции, которые связаны, как правило, не с недостаточ­ностью преломляющих сред, а с ненормальной длиной глазного яблока.

Аномалия рефракции, при которой световые лучи вследствие удлине­ния глазного яблока фокусируются впереди сетчатки, называется близору­костью - миопией (греч. myo - закрывать, смыкать и ops - глаз). Отдален­ные предметы при этом видны неотчетливо. Для исправления близоруко­сти необходимо использовать двояковогнутые линзы.

Аномалия рефракции, при которой световые лучи вследствие уко­рочения глазного яблока фокусируются позади сетчатки, называется даль­нозоркостью - гиперметропией (греч. hypermetros - чрезмерный и ops -глаз). Для коррекции дальнозоркости требуются двояковыпуклые линзы. С возрастом эластичность хрусталика уменьшается, он отвердевает и утра­чивает способность менять свою кривизну при сокращении ресничной мышцы. Такая старческая дальнозоркость, развивающаяся у людей после 40-45 лет, называется пресбиопией (греч. presbys - старый, ops - глаз, взгляд). Она исправляется с помощью очков с двояковыпуклыми линзами, которые надевают при чтении. Сочетание в одном глазу различных видов рефракций или разных степеней одного вида рефракции называется ас­тигматизмом (греч, а - отрицание, stigma - точка). При астигматизме лу­чи, вышедшие из одной точки объекта, не собираются вновь в одной точ­ке, и изображение получается расплывчатым. Для исправления астигма­тизма используют собирательные и рассеивающие цилиндрические линзы.

Под воздействием световой энергии в фоторецепторах сетчатки глаза происходит сложный фотохимический процесс, который способствует транс­формации этой энергии в нервные импульсы. В палочках содержится зри­тельный пигментродопсинколбочках-йодопсин. Под влиянием света ро­допсин разрушается, в темноте он восстанавливается. Для этого необходим витамин А. При отсутствии или недостатке витамина А образование родопси­на нарушается и наступает гемералопия (греч. hemera - день, alaos - слепой,

ops - глаз), или куриная слепота, т.е. неспособность видеть при слабом свете или в темноте. Йодопсин под влиянием света также разрушается, но медлен­нее родопсина (примерно в 4 раза). В темноте он тоже восстанавливается.

Уменьшение чувствительности фоторецепторов глаза к свету называ­ется адаптацией. Адаптация глаз при выходе из темного помещения на яркий свет (световая адаптация) происходит в среднем за 4-5 минут. Пол­ная адаптация глаз при выходе из светлого помещения в более темное (темновая адаптация) осуществляется значительно дольше и происходит в среднем за 40-50 минут. Чувствительность палочек при этом возрастает в 200000-400000 раз. Вот почему рентгенологи, выходя из своего затемнен­ного кабинета на свет, обязательно одевают темные очки. Для изучения хода адаптации имеются специальные приборы - адаптометры.

Восприятие цвета предметов обеспечивается колбочками. В сумерках, когда функционируют только палочки, цвета не различаются. Существует 7 видов колбочек, реагирующих на лучи различной длины и вызывающие ощущение различных цветов. В анализе цвета участвуют не только фоторе­цепторы, но и ЦНС. Врожденное нарушение цветового зрения называется дальтонизмом. Джон Дальтон (1766-1844), английский химик и физик, пер­вым (1794) описал данный дефект зрения, которым страдал сам. Дальтониз­мом страдают примерно 8% мужчин и 0,5% женщин. Люди-дальтоники не могут быть водителями транспорта, так как не различают цветовых дорож­ных сигналов. Нарушения цветового зрения устанавливают при помощи общедиагностических полихроматических таблиц Е.Б. Рабкина.

Рассматривание предметов обоими глазами называют бинокулярным зрением. Когда мы смотрим на какой-либо предмет обоими глазами, то у нас не получается восприятия двух одинаковых предметов. Это связано с тем, что изображения от всех предметов при бинокулярном зрении падают на соответствующие, или идентичные, участки сетчатки, в результате чего в представлении человека эти два изображения сливаются в одно. Биноку­лярное зрение имеет большое значение в определении расстояния до пред­мета, его формы, рельефности изображения и т.д.

Важным параметром зрительных функций глаза является острота зрения. Под остротой зрения понимают способность глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоя­нии. За нормальную остроту зрения, равную единице (visus = 1), принята обратная величина угла зрения 1 угловой минуты (Г). Если этот угол будет больше (например, 5'), то острота зрения уменьшается (1/5 = 0,2), а если он меньше (например, 0,5'), то острота зрения увеличивается вдвое (visus = 2,0) и т.д.

Для исследования остроты зрения в клинической практике широко применяются таблицы Д.А. Сивцева с буквенными оптотипами (специаль­но подобранными знаками-буквами), а также таблицы, составленные из колец Х. Ландольта.

2.1. Глаз как оптическая система

На рисунке 2.1. изображен разрез глазного яблокаи показаны основные детали глаза.


Рис. 2.1. Горизонтальный разрез правого глаза.

Глаз представляет собой шаровидное тело (глазное яблоко), почти полностью покрытое непрозрачной твердой оболочкой (склерой). В передней части глаза оболочка переходит в выпуклую и прозрачную роговицу. Склера и роговица обуславливают форму глаза, защищают его и служат местом крепления глазодвигательных мышц. Диаметр всего глазного яблока около 22-24 мм, масса 7-8 г.

Тонкая сосудистая пластинка (радужная оболочка) является диафрагмой, ограничивающей проходящий пучок лучей. Через отверстие в радужной оболочке (зрачок) свет проникает в глаз. В зависимости от величины падающего светового потока диаметр зрачка может изменяется от 1 до 8 мм.

Помимо сосудов радужная оболочка содержит большое количество пигментных клеток, в зависимости от их содержания и глубины залегания радужная оболочка имеет различный цвет. Когда в радужной оболочке нет никакого цветного вещества, то она кажется красной от крови, заключенной в пронизывающих ее кровеносных сосудах. В этом случае глаза плохо защищены от света и иногда страдают светобоязнью (альбинизмом), но в темноте превосходят по остроте зрения глаза с темной окраской.

Хрусталик представляет собой двояковыпуклую эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на две камеры: переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

Внутренняя поверхность задней камеры покрыта сетчаткой, представляющей собой светочувствительный слой. Получаемое светочувствительными элементами сетчатки раздражение передается волокнам зрительного нерва и по ним достигает зрительных центров мозга. Между сетчаткой и склерой находится тонкая сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

Место входа зрительного нерва представляет собой слепое пятно. Немного выше расположено желтое пятно – участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза на угол около 5°.

2.1.2. Упрощенная оптическая схема глаза

Поток излучения, отраженный от наблюдаемого предмета, проходит через оптическую систему глаза и фокусируется на внутренней поверхности глаза – сетчатой оболочке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое). Оптическую систему глаза составляют роговица, водянистая влага, хрусталик и стекловидное тело (рис. 2.2). Особенностью этой системы является то, что последняя среда, проходимая светом непосредственно перед образованием изображения на сетчатке, обладает показателем преломления, отличным от единицы. Вследствие этого фокусные расстояния оптической системы глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.


Рис. 2.2. Оптическая система глаза.

Преломление света в глазе происходит главным образом на его внешней поверхности – роговой оболочке, или роговице, а также на поверхностях хрусталика. Радужная оболочка определяет диаметр зрачка, величина которого может изменяться непроизвольным мышечным усилием от 1 до 8 мм.

Оптическая система глаза чрезвычайно сложна, поэтому при расчетах хода лучей обычно пользуются упрощенными, эквивалентными истинному глазу «схематическими глазами». В таблице 2.1 приведены данные для аккомодированного и не аккомодированного глаза.

Таблица 2.1. Данные «схематического глаза».

Оптическая сила глаза вычисляется как обратное фокусное расстояние:

где – заднее фокусное расстояние глаза, выраженное в метрах.

2.1.3. Аккомодация

Аккомодация – это способность глаза приспосабливаться к четкому различению предметов, расположенных на разных расстояниях от глаза.

Аккомодация происходит путем изменения кривизны поверхностей хрусталика при помощи натяжения или расслабления ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы хрусталик под действием упругих сил увеличивает свою кривизну.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см (рис. 2.4).


а) дальняя точка

б) ближняя точка
Рис. 2.4. Изображение ближней и дальней точки.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в дптр).

С возрастом способность глаза к аккомодации постепенно уменьшается. Скажем, в возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 дптр), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2.5 дптр), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения – это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета.

В среднем расстояние наилучшего зрения составляет около 25-30 см, хотя для каждого человека оно может быть индивидуальным.

7.5.2. Светопроводящие среды глаза и преломление света (рефракция)

влагу передней камеры, хрусталик и студнеобразную жидкость — стекловидное тело, назначение которых преломлять световые лучи и фокусировать их в области расположения рецепторов на сетчатке. Стенками камеры служат 3 оболочки. Наружная непрозрачная обо­лочка— склера переходит спереди в прозрачную роговицу. Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обусловлива­ющую цвет глаз. В середине радужной оболочки (радужки) имеется отверстие — зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлек­сом, центр которого находится в среднем мозге. Внутренняя с е т ч а-тая оболочка (сетчатка) или ретина, содержит фото­рецепторы глаза — палочки и колбочки и служит для преобразова­ния световой энергии в нервное возбуждение. Светопреломляющие среды глаза, преломляя световые лучи, обеспечивают четкое изобра­жение на сетчатке Основными преломляющими средами глаза челове­ка являются роговица и хрусталик. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т. е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают пре­ломления. Все остальные лучи преломляются и сходятся внутри ка­меры глаза в одной точке — фокусе. Приспособление глаза к четко­му видению различно удаленных предметов (его фокусирование) на­зывается аккомодацией. Этот процесс у человека осуществля­ется за счет изменения кривизны хрусталика. Ближняя точка ясного видения с возрастом отодвигается (от 7 см в 7-10 лет до 75 см в 60 лет и более), так как снижается эластичность хрусталика и ухудшается аккомодация. Возникает старческая дальнозоркость.

В норме длинник глаза соответствует преломляющей силе глаза. Однако у 35% людей имеются нарушения этого соответствия. В слу­чае близорукости длинник глаза больше нормы и фокусировка лучей происходит перед сетчаткой, а изображение на сетчатке стано­вится расплывчатым. В дальнозорком глазу, наоборот, длинник глаза меньше нормы и фокус располагается за сетчаткой. В результа­те изображение на сетчатке тоже расплывчато.

7.5.3. Фоторецепция

Фоторецепторы глаза (палочки и колбочки) — это

высокоспециализированные клетки, преобразующие световые раздражения в не­рвное возбуждение. Фоторецепция начинается в наружных сегментах этих клеток, где на специальных дисках, как на полочках, располо­жены молекулы зрительного пигмента (в палочках — родопсин, в колбочках — разновидности его аналога). Под действием света про­исходит ряд очень быстрых превращений и обесцвечивание зрительного пигмента.

В ответ на стимул эти рецепторы, в отличие от всех других рецепторов, формируют рецепторный потенциал в виде тор­мозных изменений на мембране клетки. Другими словами, на свету происходит гиперполяризация мембран рецепторних клеток, а в темноте — ихдеполяризация, т. е. стимулом для нихявляется темно­та, а не свет. При этом в соседних клетках происходят обратные из­менения, что позволяет отделить светлые и темные точки про­странства. Фотохимические реакции в наружных сегментах фото-рецепторов вызывают изменения в мембранах остальной части ре-цепторной клетки, которые передаются биполярным клеткам (первым нейронам), а затем и ганглиозным клеткам (вторым нейро­нам), от которых нервные импульсы направляются в головной мозг. Часть ганглиозных клеток возбуждается на свету, часть — в темноте.

Палочки, рассеянные преимущественно по периферии сетчатки (их 130 млн), и колбочки, расположенные преимущественно в цент­ральной части сетчатки (их 7 млн), различаются по своим функциям (рис. 16-А). Палочки обладают более высокой чувствительнос­тью, чем колбочки, и являются органами сумеречного зрения. Они воспринимают черно-белое (бесцветное) изображение. Колбочки представляют собой органы дневного зрения. Они обеспечивают цветное зрение. Существует 3 вида колбочек у человека: восприни­мающие преимущественно красный, зеленый и сине-фиолетовый цвет. Разная их цветовая чувствительность определяется различиями в зрительном пигменте. Комбинации возбуждения этих приемников разных цветов дают ощущуния всей гаммы цветовых оттенков, а рав­номерное возбуждение всех трех типов колбочек — ощущение белого цвета. При нарушении функции колбочек наступает цветовая слепо­та (дальтонизм), человек перестает различать цвета, в частности, красный и зеленый цвет. Это заболевание отмечается у 8% мужчин и у 0.5% женщин.

Нарушения зрения, связанные с аномалиями рефракции

Основной жалобой большинства людей на приеме у офтальмолога является снижение зрения, и чаще всего причиной этого являются не заболевания, а аномалии рефракции.

Рефракция – это процесс преломления лучей света. Сила преломления измеряется в диоптриях. Глаз человека представляет собой сложную систему оптических линз, и главную преломляющую функцию выполняют роговица и хрусталик.

Помимо этого наш глаз имеет способность фокусироваться на объектах, расположенных на разных расстояниях от него. Эта функция глаза называется аккомодацией. Она осуществляется за счет напряжения мышечного аппарата хрусталика, ведущего к изменению его кривизны.

Для того чтобы мы могли видеть четко, пучок света, проходящий через все оптические среды, должен сфокусироваться на сетчатке, которая находится на противоположной от зрачка стороне глаза. Условием этого является баланс между преломляющей силой и передне-задним размером глаза. Если этот баланс нарушен, возникают аномалии рефракции – миопия («близорукость»), гиперметропия («дальнозоркость») и астигматизм. Отдельно стоит отметить состояние, связанное с ослаблением аккомодации, – пресбиопию, именуемую в обиходе «возрастной дальнозоркостью».

Рассмотрим каждое понятие более подробно. При миопии свет фокусируется перед сетчаткой. Это происходит из-за его слишком сильного преломления или из-за того, что глаз чуть более вытянут в передне-заднем размере по сравнению с физиологической нормой. Эти два фактора могут действовать и одновременно. Человек с миопией плохо видит вдаль, щурится, чтобы рассмотреть удаленные объекты. Проявляется это, как правило, в детском или юношеском возрасте и имеет тенденцию к прогрессированию. Свою негативную роль здесь играет наследственность.

Проблему решает ношение очков с рассеивающими (отрицательными) линзами. Контактные линзы являются альтернативой очкам и имеют по сравнению с ними ряд преимуществ, но только при аккуратном соблюдении правил использования. Вопреки распространенному взгляду, очки не портят зрение, поэтому не стоит их бояться. Мнение, что «глаз должен работать», ушло в прошлое, и адекватная коррекция миопии очками или линзами, как правило, помогает остановить ее прогрессирование. С этой целью используется также лазерная коррекция зрения, но эта процедура представляет собой уже оперативное вмешательство – со своими показаниями, противопоказаниями и возможными осложнениями.

С каждым годом число близоруких людей увеличивается. Связано это с тем, что современная цивилизация диктует свои условия жизни: все больше времени люди проводят с компьютерами и гаджетами. Глаз при этом находится в условиях постоянного напряжения аккомодации, что приводит к запуску определенных механизмов его перестройки. Часто родители вручают малышам планшеты и телефоны, чтобы отвлечь их внимание мультфильмами и играми, не понимая, что на пике формирования у ребенка рефракции они сами, возможно, обрекают его на ношение очков в будущем.

Таким образом, необходимо осуществлять элементарную профилактику развития данного состояния: расстояние до книги или гаджета не должно быть меньше 35-40 см, при этом важно давать глазам возможность расслабиться, переключая взгляд с близкого объекта на дальний. Не утратила своей актуальности и известная всем со школьной скамьи гимнастика для глаз.

В отличие от миопии, при гиперметропии преломление света в глазу слишком слабое либо глаз слишком «короткий», поэтому лучи света, если бы могли пройти сквозь сетчатку, сфокусировались бы за ней. Чаще всего это врожденное непрогрессирующее состояние. В принципе, человек с гиперметропией должен плохо видеть и вдаль и вблизи, но при ее небольших степенях наш глаз способен адаптироваться к этому состоянию и за счет напряжения аккомодации, усилив преломление света, передвинуть фокус на сетчатку (чего не происходит при миопии). Это дает возможность видеть четко, и человек даже не подозревает о наличии у него данной аномалии. Такое явление называют скрытой гиперметропией. Единственное, что может беспокоить в данном случае, – это повышенная утомляемость глаз, особенно при работе с объектами на близком расстоянии. Объясняется она тем, что аккомодация при гиперметропии ведет к двойной нагрузке на орган зрения. При гиперметропии высоких степеней запаса аккомодации уже не хватает и глаз закономерно видит плохо на любом расстоянии.

К 40 годам у всех людей без исключения начинаются естественные возрастные процессы ослабления аккомодации. В результате глаз теряет способность к адаптации и «счастливчики» со скрытой гиперметропией начинают замечать, помимо естественного для своего возраста снижения зрения вблизи, и ухудшение зрения вдаль. Тогда-то они и узнают о своей особенности.

Решение проблемы со зрением при гиперметропии такое же, что и при миопии, – с той лишь разницей, что линзы – контактные или в очках – должны быть уже не рассеивающими, а собирающими (положительными).

Астигматизм отличается от предыдущих видов аномалий. Лучи света в разных отделах роговицы и хрусталика преломляются неравномерно и неодинаково. Часть их преломляется сильнее, часть слабее, и поэтому они не могут сойтись на сетчатке в одной точке. Чаще всего это состояние врожденное, и связано оно с особенностями строения роговицы. Также астигматизм может возникнуть вследствие различных поражений роговицы при травмах, воспалительных заболеваниях и операциях на глазах.

При астигматизме в зависимости от его степени человек может видеть легкое двоение, нечеткий контур мелких объектов или букв – вплоть до их полного раздваивания. Астигматизм может существовать и как самостоятельная аномалия, так и в сочетании с миопией или гиперметропией. Корректировать его сложнее, но также возможно. Пациенту подбираются очки со сфероцилиндрическими линзами, которые преломляют свет таким образом, чтобы его лучи смогли сфокусироваться на сетчатке в одной точке. Для коррекции астигматизма также используются контактные линзы и лазерные операции.

В заключение обратимся к понятию пресбиопия. Это состояние не относится к аномалиям рефракции, но напрямую связано со способностью глаза к аккомодации, которая имеет особое значение при фокусировании на близких объектах. Как уже говорилось выше, к 40 годам мышцы, участвующие в аккомодации, постепенно ослабевают, а хрусталик теряет способность менять кривизну, поэтому человек перестает четко видеть на близком расстоянии. При чтении текст приходится отодвигать все дальше, а шрифт на экране компьютера делать все крупнее. Процесс этот неотвратим и необратим. Обычно к 60 годам мы полностью теряем способность к аккомодации. Ситуацию спасает использование очков для близи: сначала они берут на себя часть функций ослабленной аккомодации, а затем постепенно полностью ее заменяют. Для коррекции зрения используются очки с положительными линзами, причем каждые несколько лет происходит замена линз в сторону увеличения диоптрий начиная с их небольших значений. Очень распространено мнение, что зрение вблизи портится как раз из-за использования очков: якобы чем позже начать их носить, тем лучше. Однако это в корне неверно: процесс ослабления аккомодации будет идти независимо от ношения или неношения очков. К этой ситуации можно подготовиться, как раз вооружившись очками, что позволит чувствовать себя комфортно и не мучиться от головной боли, «недостаточной» длины рук и постоянной усталости глаз.

У людей с аномалиями рефракции пресбиопия имеет ряд особенностей. Так, люди с миопией замечают ослабление аккомодации гораздо позже. Часто им достаточно снять очки, чтобы прочитать что-то вблизи, так как особенности оптики их глаза таковы, что он и без аккомодации способен видеть на близком расстоянии. «Гиперметропам» повезло меньше: трудности с чтением у них возникают раньше других, а диоптрии в очках для чтения у них будут исходно больше. Кроме того, как уже говорилось выше, у пациентов с гиперметропией появляется потребность в очках для дали.

Тем не менее, все эти недостатки зрения поддаются успешной коррекции. Ношение очков или контактных линз при нарушениях рефракции способно обеспечить человеку высокое качество жизни, а выполнение несложных профилактических мер поможет поддержать здоровье глаз.

Врач офтальмолог
Городской поликлиники №32
Мешвелиани Е.В.

Тема: Движение света в глазе

Человеческий глаз - замечательное достижение эволюции и отличный оптический инструмент. Порог чувствительности глаза близок к теоретическому пределу, обусловленному квантовыми свойствами света, в частности дифракцией света. Диапазон воспринимаемых глазом интенсивностей составляет , фокус может быстро перемещаться от очень короткого расстояния до бесконечности.
Глаз является системой линз, которая формирует перевернутое действительное изображение на светочувствительной поверхности. Глазное яблоко имеет приблизительно сферическую форму с диаметром около 2,3см. Внешняя его оболочка является почти волокнистым непрозрачным слоем, называемым склерой. Свет поступает в глаз через роговицу, представляющую собой прозрачную оболочку на внешней стороне поверхности глазного яблока. В центре роговицы расположено цветное кольцо – радужкой (радужная оболочка) со зрачком посредине. Они действуют подобно диафрагме, осуществляя регуляцию поступления света в глаз.
Хрусталик представляет собой линзу, состоящую из волокнистого прозрачного материала. Его форма и, следовательно, фокусное расстояние могут изменяться с помощью цилиарных мышц глазного яблока. Пространство между роговицей и линзой заполнено водянистой жидкостью и называется передней камерой. За линзой расположено прозрачное желеобразное вещество, называемое стекловидным телом.
Внутренняя поверхность глазного яблока покрыта сетчаткой, которая содержит многочисленные нервные клетки - зрительные рецепторы: палочки и колбочки, которые отвечают на зрительные раздражения, генерируя биопотенциалы. Наиболее чувствительной областью сетчатки является желтое пятно, где содержится наибольшее число зрительных рецепторов. Центральная часть сетчатки содержит только плотно упакованные колбочки. Глаз вращается, чтобы рассмотреть изучаемый объект.

Маленькое изображение

Рис. 1. Глаз человека

Преломление в глазе

Глаз является оптическим эквивалентом обычной фотографической камеры. В нем есть система линз, апертурная система (зрачок) и сетчатка, на которой фиксируется изображение.

Система линз глаза сформирована из четырех преломляющих сред: роговицы, водяной камеры, хрусталика, стеклянного тела. Показатели их преломления не имеют значительных отличий. Они составляют 1,38 для роговицы, 1,33 для водяной камеры, 1,40 для хрусталика и 1,34 для стекловидного тела (рис. 2).


Рис. 2. Глаз как система преломляющих сред (числа являются показателями преломления)

В этих четырех преломляющих поверхностях происходит преломление света: 1) между воздухом и передней поверхностью роговицы; 2) между задней поверхностью роговицы и водяной камерой; 3) между водяным камерой и передней поверхностью хрусталика; 4) между задней поверхностью хрусталика и стекловидным телом.
Наиболее сильное преломление происходит на передней поверхности роговицы. Роговица имеет небольшой радиус кривизны, и показатель преломления роговицы в наибольшей степени отличается от показателя преломления воздуха.
Преломляющая способность хрусталика меньше, чем у роговицы. Она составляет около одной трети общей преломляющей мощности систем линз глаза. Причина этого различия в том, что жидкости, окружающие хрусталик, имеют показатели преломления, которые существенно не отличаются от показателя преломления хрусталика. Если хрусталик удалить из глаза, окруженный воздухом он имеет показатель преломления почти в шесть раз больший, чем в глазе.

Хрусталик выполняет очень важную функцию. Его кривизна может изменяться, что обеспечивает тонкое фокусирование на объекты, расположенные на различных расстояниях от глаза.

Редуцированный глаз

Редуцированный глаз является упрощенной моделью реального глаза. Он схематически представляет оптическую систему нормального глаза человека. Редуцированный глаз представлен единственной линзой (одной преломляющей средой). В редуцированном глазе все преломляющие поверхности реального глаза суммируются алгебраически, формируя единственную преломляющую поверхность.
Редуцированный глаз позволяет провести простые вычисления. Общая преломляющая способность сред составляет почти 59 диоптрий, когда линза аккомодирована на зрение отдаленных объектов. Центральная точка редуцированного глаза лежит впереди сетчатки на 17 миллиметров. Луч из любой точки объекта приходит в редуцированный глаз и проходит через центральную точку без преломления. Так же, как стеклянная линза формирует изображение на листе бумаги, система линз глаза образует изображение на сетчатке. Это уменьшенное, действительное, перевернутое изображение объекта. Головной мозг формирует восприятие объекта в прямом положении и в реальном размере.

Аккомодация

Для ясного видения объекта необходимо, чтобы после преломления лучей, изображение формировалось на сетчатке. Изменение преломляющей силы глаза для фокусировки близких и отдаленных объектов называется аккомодацией.
Наиболее отдаленная точка, на которую фокусируется глаз, называется дальней точкой видения - бесконечность. В этом случае параллельные лучи, входящие в глаз, фокусируются на сетчатку.
Объект виден в деталях, когда он установлен как можно ближе к глазу. Минимальное расстояние четкого видения – около 7 см при нормальном зрении. В этом случае аппарат аккомодации находится в максимально напряжённом состоянии.
Точка, расположенная на расстоянии 25см, называется точкой наилучшего видения, поскольку в данном случае различимы все детали рассматриваемого объекта без максимального напряжения аппарата аккомодации, вследствие чего глаз может длительное время не утомляться.
Если глаз сфокусирован на объект в ближней точке, он должен отрегулировать свое фокусное расстояние и увеличить преломляющую силу. Этот процесс происходит путем изменений формы хрусталика. Когда объект подносят ближе к глазу, форма хрусталика изменяется от формы умеренно выпуклой линзы в форму выпуклой линзы.
Хрусталик образован волокнистым желеобразным веществом. Он окружен прочной гибкой капсулой и имеет специальные связки, идущие от края линзы к внешней поверхности глазного яблока. Эти связки постоянно напряжены. Форма хрусталика изменяется цилиарной мышцей. Сокращение этой мышцы уменьшает натяжение капсулы хрусталика, он становится более выпуклым и из-за естественной эластичности капсулы принимает сферическую форму. И наоборот, когда цилиарная мышца полностью расслаблена, преломляющая сила линзы наиболее слабая. С другой стороны, когда цилиарная мышца находится в максимально сокращенном состоянии, преломляющая сила линзы становится наибольшей. Этот процесс управляется центральной нервной системой.


Рис. 3. Аккомодация в нормальном глазе

Старческая дальнозоркость

Преломляющая сила хрусталика может увеличиваться от 20 диоптрий до 34 диоптрий у детей. Средняя аккомодация составляет 14 диоптрий. В результате общая преломляющая сила глаза составляет почти 59 диоптрий, когда глаз аккомодирован для дальнего зрения, и 73 диоптрия - при максимальной аккомодации.
При старении человека хрусталик становиться более толстым и менее эластичным. Следовательно, способность линзы изменять свою форму уменьшается с возрастом. Сила аккомодации уменьшается от 14 диоптрий у ребенка до менее 2 диоптрий в возрасте от 45 до 50 лет и становится равной 0 в возрасте 70 лет. Поэтому линза почти не аккомодируется. Это нарушение аккомодации называется старческой дальнозоркостью. Глаза при этом сфокусированы всегда на постоянном расстоянии. Они не могут аккомодироваться как для ближнего, так и дальнего зрения. Следовательно, чтобы видеть ясно на различных расстояниях, старый человек должен носить бифокальные очки с верхним сегментом, сфокусированным для дальнего видения, и более низким сегментом, сфокусированным для ближнего видения.

Ошибки преломления

Эмметропия. Считается, что глаз будет нормальным (эмметропичным), если параллельные световые лучи с отдаленных объектов фокусируются в сетчатку при полном расслаблении цилиарной мышцы. Такой глаз видит ясно отдаленные объекты, когда расслаблена цилиарная мышца, то есть без аккомодации. При фокусировании объектов ближнего диапазона расстояний в глазе сокращается цилиарная мышца, обеспечивая подходящую степень аккомодации.

Маленькое изображение

Рис. 4. Преломление параллельных световых лучей в глазе человека.

Гиперметропия (гиперопия). Гиперметропия также известна как дальнозоркость. Она обусловлена либо малым размером глазного яблока, либо слабой преломляющей силой системы линз глаза. В таких условиях параллельные световые лучи не преломляются системой линз глаза достаточно для того, чтобы фокус (соответственно изображение) находился на сетчатке. Для преодоления этой аномалии цилиарная мышца должна сократиться, увеличив оптическую силу глаза. Следовательно, дальнозоркий человек способен фокусировать отдаленные объекты на сетчатке, используя механизм аккомодации. Для видения более близких объектов мощности аккомодации не хватает.
При небольшом резерве аккомодации дальнозоркий человек часто не способный аккомодировать глаз достаточно для фокусирования не только близких, но даже отдаленных объектов.
Для коррекции дальнозоркости необходимо увеличить преломляющую силу глаза. Для этого используют выпуклые линзы, которые добавляют преломляющую силу к силе оптической системе глаза.

Миопия. При миопии (или близорукости) параллельные световые лучи с отдаленных объектов фокусируются перед сетчаткой, несмотря на то, что цилиарная мышца полностью расслаблена. Это бывает из-за слишком длинного глазного яблока, а также вследствие слишком высокой преломляющей силы оптической системы глаза.
Нет механизма, с помощью которого глаз мог бы уменьшить преломляющую силу своего хрусталика менее, чем возможно при полном расслаблении цилиарной мышцы. Процесс аккомодации приводит к ухудшению видения. Следовательно, человек с миопией не может фокусировать отдаленные объекты на сетчатку. Изображение может сфокусироваться только, если объект находится достаточно близко от глаза. Следовательно, у человека с миопией ограничена дальняя точка ясного видения.
Известно, что лучи, проходящие через вогнутую линзу, преломляются. Если преломляющая сила глаза слишком велика, как при миопии, иногда она может быть нейтрализована вогнутой линзой. Используя лазерную технику, можно также откорректировать слишком большую выпуклость роговицы.

Астигматизм. В астигматическом глазе преломляющая поверхность роговицы является не сферической, а эллипсоидальной. Это происходит из-за слишком большой кривизны роговицы в одной из своих плоскостей. В результате световые лучи, проходящие через роговицу в одной плоскости, не преломляются так же сильно, как лучи, проходящие через нее в другой плоскости. Они не собираются в общем фокусе. Астигматизм не может компенсироваться глазом с помощью аккомодации, но корректировать его можно с помощью цилиндрической линзы, которая исправит ошибку в одной из плоскостей.

Коррекция оптических аномалий контактными линзами

Недавно для коррекции различных аномалий зрения стали использовать пластические контактные линзы. Они устанавливаются против передней поверхности роговицы и фиксируются тонким слоем слез, который заполняет пространство между контактной линзой и роговицей. Жесткие контактные линзы делают из жесткой пластмассы. Их размеры составляют 1мм в толщину и 1см в диаметре. Также существуют мягкие контактные линзы.
Контактные линзы заменяют роговицу как внешнюю сторону глаза и почти полностью аннулируют долю преломляющей способности глаза, которая происходит в норме на передней поверхности роговицы. При использовании контактных линз передняя поверхность роговицы не играет значимой роли в преломлении глаза. Основную роль начинает выполнять передняя поверхность контактной линзы. Особенно важно это у лиц с ненормально сформированной роговицей.
Другой особенностью контактных линз является то, что, поворачиваясь вместе с глазом, они дают более широкую область ясного видения, чем это делают обычные очки. Они являются также более удобными в использовании для художников, спортсменов и т.п.

Острота зрения

Способность человеческого глаза ясно видеть мелкие детали ограничена. Нормальный глаз может различать различные точечные источники света, расположенные на расстоянии 25 секунд дуги. То есть, когда световые лучи с двух отдельных точек попадают в глаз под углом более 25 секунд между ними, они видны в качестве двух точек. Лучи с меньшим угловым разделением не могут быть различены. Это означает, что человек с нормальной остротой зрения может различить две точки света на расстоянии 10 метров, если они друг от друга находятся на расстоянии 2 миллиметра.

Рис. 7. Максимальная острота зрения для двух точечных источников света.

Наличие этого предела предусмотрено структурой сетчатки. Средний диаметр рецепторов в сетчатке составляет почти 1,5 микрометров. Человек может нормально различить две отдельные точки, если в сетчатке расстояние между ними составляет 2 микрометра. Таким образом, чтобы различать два небольших объекта, они должны возбудить две разных колбочки. По крайней мере, между ними один будет находиться 1 невозбужденная колбочка.

Читайте также: