Транслокации хромосом: реципрокные и робертсоновские. Характеристика

Обновлено: 17.05.2024

Транслокации представляют собой межхромосомную перестройку, при которой происходит перенос участка одной хромосомы на другую. В гетерозиготе по транслокации гены, принадлежащие к разным, негомологичным хромосомам, наследуются как принадлежащие к одной группе сцепления. Это объясняется тем, что полностью функциональными оказыва.тся только те споры (гаметы), которые несут родительские сочетания хромосом. Характер конъюгации транслоцированных хромосом меняется: образуется фигура креста. Плотная конъюгация вблизи точек разрывов оказывается затруднённой, что приводит к подавлению кроссинговера в этих участках.

У гетерозиготы по транслокации в профазе мейоз образуются квадриваленты, вместо бивалентов, поскольку гомологичные участки оказываются у всех 4-х конъюгирующих хромосом. Из 6-ти возможных типов гаплоидных продуктов, только 2 типа функционируют нормально. Те, которые получили полные наборы генов, характерные для исходных родительских форм. Остальные 4 типа несут дупликации и нехватки. Следовательно не деют жизнеспособного потомства и не участвуют в оплодотворении.

Гетерозиготы по реципрокным транслокациям редко встречаются у животных, но часто встречаются у растений. Реципрокные транслокации являются сбалансированной хромосомной перестройкой, при их формировании не происходит потери генетического материала. Носители реципрокных транслокаций, как правило, фенотипически нормальны, при этом имеют повышенную вероятность бесплодия, сниженной фертильности, спонтанных выкидышей и рождения детей с врождёнными наследственными заболеваниями, так как половина гамет у них генетически несбалансирована из-за неравновесного расхождения перестроенных хромосом в мейозе. В мейозе могут образовываться мультивалетны. Число образующих их хромосом может варьировать, что отражает число реципрокных транслокаций. Функциональными оказываются те гаметы (споры), которые получили полные наборы плеч хромосом. Нормальное оплодотворение происходит только при слиянии тех гамет, которые внесли в зиготу целые родительские комплексы транслоцированных хромосом. Слияние гамет, несущих одинаковые родительские комплексы, летально. Таким образом транслокации обеспечивают изоляцию новых форм и дивергенцию в пределах вида.

Робертсоновские транслокации приводят к изменению числа хромосом. Если 2 телоцентрические хромосомы сливаются в области цетромеры, то образуется одна метацентрическая хромосома.

Их носители фенотипически нормальны, однако у них существует риск самопроизвольных выкидышей и рождения детей с несбалансированным кариотипом, который существенно варьирует в зависимости от хромосом, вовлеченных в слияние, а также от пола носителя. Большинство Робертсоновских транслокаций затрагивают хромосомы 13 и 14. Робертсоновская транслокация с участием хромосомы 21 приводит к так называемому «семейному» (наследуемому) синдрому Дауна. Робертсоновские транслокации, возможно, являются причиной различий между числом хромосом у близкородственных видов. Показано, что два плеча 2-й хромосомы человека соответствуют 12 и 13 хромосомам шимпанзе.

Поможем написать любую работу на аналогичную тему

ХРОМОСОМНЫЕ МУТАЦИИ ТИПА ТРАНСЛОКАЦИЙ. ПОВЕДЕНИЕ ВО ВРЕМЯ МЕЙОЗА. ПРИЧИНЫ НИЗКОЙ ЖИЗНЕСПОСОБНОСТИ И ОТСУТСТВИЯ РЕКОМБИНАНТОВ.

Хромосомные транслокации

транслокация

Перестройку, при которой происходит перенос участка хромосомы на негомологичную хромосому, называют транслокацией. Подобные мутации в клетках могут быть причиной развития заболеваний (лимфомы, саркомы, лейкоза).

Как возникают транслокации

Формирование такой перестройки происходит вследствие повреждения ДНК. Как правило, это двунитевые разрывы с последующей ошибкой репарации. Аномалии возникают:

  • при неправильном воссоединении разрывов во время репарации за счет негомологичной рекомбинации;
  • ошибочном выборе паралогичной последовательности ДНК (вместо гомологичной) при репарации разрыва ДНК во время гомологичной рекомбинации.

Повреждение ДНК может быть обусловлено экзогенными (химиотерпией, ионизирующим излучением) и эндогенными (воздействием свободных радикалов) факторами.

Кроме того, перестройки в хромосомах могут возникать во время созревания яйцеклетки и сперматозоида. Подобные мутации могут наследоваться от отца или матери.

Реципрокные транслокации

Представляют собой сбалансированную хромосомную перестройку. В этом случае не происходит потери генетического материала. Реципрокные перестройки считаются наиболее распространенной хромосомной аномалией человека.

Носители обычно фенотипически нормальны, но имеют повышенную вероятность бесплодия, сниженную фертильность, риски спонтанных выкидышей и рождения детей с генетическими болезнями. У 5 % носителей встречаются врожденные аномалии развития, задержки развития (у 50 % наблюдается умственная отсталость).

Формируются тогда, когда одна хромосома соединяется с другой. Данные мутации представляют собой одну из обширных групп врожденных хромосомных аномалий у человека.

Носители остаются нормальными фенотипически, но у них высоки риски самопроизвольного выкидыша и рождения детей с несбалансированным кариотипом. Транслокации обычно затрагивают 13-ю и 14-ю хромосомы. Перестройки в 21-й хромосоме вызывают наследуемый (семейный) синдром Дауна.

Несбалансированные транслокации

Возникают, если один из родителей является носителем сбалансированной хромосомной перестройки. В этом случае у ребенка выявляется несбалансированная транслокация в виде присутствия лишнего фрагмента хромосомы или потери части материала другой хромосомы в паре. Подобная мутация может возникать и у детей с нормальными родителями (т. н. вновь возникшая перестройка).

Дети с несбалансированной хромосомной транслокацией страдают от задержек развития, испытывают трудности в обучении, имеют проблемы со здоровьем. Выраженность патологии зависит от того, какая именно хромосома пострадала.

Для выявления носительства может проводиться генетический анализ. Кариотипирование помогает обнаружить различные виды транслокаций, в т. ч. несбалансированные.

Выявить патологии можно во время вынашивания ребенка. Для этого предусмотрены инвазивные пренатальные тесты.

Анализ кариотипа можно пройти в медико-генетическом центре «Геномед».

Носители сбалансированной транслокации обычно здоровы. Проблемы у них появляются при желании иметь детей. Для таких людей следует заранее пройти обследование и получить консультацию врача-генетика. Во время беременности можно сделать биопсию ворсин хориона, амниоцентез, кордоцентез в целях исключения хромосомных аномалий у плода.

Робертсоновские транслокации: описание, особенности и характеристики. Реципрокные транслокации Реципрокная транслокация между хромосомами 1 и 7

Транслокации представляют собой межхромосомную перестройку, при которой происходит перенос участка одной хромосомы на другую. Отдельно выделяютреципрокные транслокации (когда две негомологичные хромосомы обмениваются участками) и Робертсоновские транслокации, или центрические слияния (при этом две негомологичные акроцентрические хромосомы объединяются в одну с утратой материала коротких плеч). Первым центрические слияния описал американец У.Робертсон (W.R.B.Robertson) в 1916 г., сравнивая кариотипы близких видов саранчовых.

Реципрокные транслокации не сопровождаются утратой генетического материала, их также называют сбалансированными транслокациями, они, как правило, не проявляются фенотипически. Однако, у носителей реципрокных транслокаций половина гамет несёт несбалансированный генетический материал, что приводит к снижению фертильности, повышенной вероятности спонтанных выкидышей и рождения детей с врождёнными аномалиями. Частота гетерозигот по реципрокным транслокациям оценивается как 1 на 600 супружеских пар. Реальный риск рождения детей с несбалансированным кариотипом определяется характером реципрокной транслокации (спецификой хромосом, вовлеченных в перестройку, размерами транслоцированных сегментов) и может достигать 40 %.

Примером реципрокной транслокации может служить транслокация типа «филадельфийская хромосома» (Ph) между хромосомами 9 и 22. В 95 % случаев именно эта мутация в гемопоэтических клетках-предшественниках является причиной хронического миелобластного лейкоза. Эту перестройку описали П.Новелл (P.Nowell) и Д.Хангерфорд (D.Hungerford) в 1960 г. и назвали в честь города в США, где оба работали. В результате этой транслокации ген ABL1 из хромосомы 9 объединяется с геном BCR хромосомы 22. Активностьнового химерного белкаприводит к нечувствительности клетки к воздействию факторов роста и вызывает её безудержное деление.

Робертсоновские транслокации являются одним из наиболее распространенных типов врождённых хромосомных аномалий у человека. По некоторым данным, их частота составляет 1:1000 новорожденных. Их носители фенотипически нормальны, однако у них существует риск самопроизвольных выкидышей и рождения детей с несбалансированным кариотипом, который существенно варьирует в зависимости от хромосом, вовлеченных в слияние, а также от пола носителя. Большинство Робертсоновских транслокаций (74 %) затрагивают хромосомы 13 и 14. В структуре обращаемости на пренатальную диагностику лидерами оказываются носители der(13;14) и der(14;21) :1 . Последний случай, а именно, Робертсоновская транслокация с участием хромосомы 21 приводит к так называемому «семейному» (наследуемому) синдрому Дауна.

Робертсоновские транслокации, возможно, являются причиной различий между числом хромосом у близкородственных видов. Показано, что два плеча 2-й хромосомы человека соответствуют 12 и 13 хромосомам шимпанзе. Возможно, 2-я хромосома образовалась в результате робертсоновской транслокации двух хромосом обезьяноподобного предка человека. Таким же образом объясняют тот факт, что различные виды дрозофилы имеют от 3 до 6 хромосом. Робертсоновские транслокации привели к появлению в Европе нескольких видов-двойников (хромосомные расы) у мышей группы видов Mus musculus, которые, как правило, географически изолированы друг от друга. Набор и, как правило, экспрессия генов при робертсоновских транслокациях не изменяются, поэтому виды практически неотличимы внешне. Однако они имеют разные кариотипы, а плодовитость при межвидовых скрещиваниях резко понижена.

Рис.3 Типы хромосомных перестроек и их последствия

Однако бывает так, что в семье фенотипически здоровых родителей возникает закономерный риск рождения ребёнка с хромосомной патологией. И связано это, как правило, с носительством одним из супругов сбалансированной транслокации хромосом.

Транслокацией называется перенос генетического материала с одной хромосомы на другую. Реципрокными транслокациями считаются транслокации, при которых разрывы возникают одновременно в двух хромосомах и последние обмениваются образовавшимися свободными сегментами. Чаще всего в такую перестройку вовлекаются длинные плечи 11 и 22 хромосом, но могут быть задействованы и другие хромосомы. При этом изменяется порядок сегментов на хромосоме, но потери генетического материала не возникает, и, соответственно, фенотипически данный вид перестроек никак себя не проявляет. Такой человек прекрасно социально адаптирован, ведёт обычный образ жизни и, как правило, ничего не подозревает о том, что он является носителем хромосомной перестройки. Однако подобное изменение хромосом может приводить к образованию несбалансированных с точки зрения своего хромосомного набора гамет, последнее ведёт к закономерному риску рождения у таких людей детей с хромосомной патологией.

На рис. 3 представлен особый вид реципрокных транслокаций – робертсоновская транслокация. При данном виде транслокации две акроцентрические хромосомы теряют короткие плечи, а длинные плечи сливаются друг с другом, формируя вместо двух одну химерную хромосому. В коротких плечах акроцентрических хромосом в основном локализуются гены рРНК, которые многократно дублируются в других акроцентрических хромосомах. Поэтому потеря коротких плеч акроцентрических хромосом не сопровождается какой-либо существенной симптоматикой. В данном случае в перестройке задействованы 14-я и 21-я хромосомы, что ведёт к формированию разного типа гамет, среди которых часть несёт добавочный материал 21-ой хромосомы. При оплодотворении такой яйцеклетки сперматозоидом с нормальным хромосомным набором произойдёт закладка эмбриона с так называемым транслокационным вариантом синдрома Дауна.

В случае участия в робертсоновской транслокации двух 21-х хромосом, риск рождения ребёнка с синдромом Дауна у носителя перестройки достигает 100%.

Глава 2. Примеры наиболее частых хромосомных патологий

2.1. Некоторые общие черты в клинике хромосомных заболеваний

Хромосомные болезни выражаются в виде синдромов с множеством аномалий в развитии человека. Каждый синдром, обусловленный определенным нарушением кариотипа пораженного лица, имеет характерные симптомы, но существуют и некоторые общие особенности, типичные для каждого хромосомного заболевания.

К ним относятся:

а) дисморфизм, который проявляется в виде самых разнообразных конкретных изменений, но закономерен при всех хромосомных заболеваниях;

б) нарушение интеллектуального развития, которое в большинстве случаев значительно отстает;

в) развитие множественных аномалий скелета и внутренних органов.

Таким образом, эти симптомы, независимо от разнообразия форм и степени их проявления, являются характерными для всех хромосомных заболеваний.

Указанные выше общие особенности хромосомных заболеваний в сочетании с семейным анамнезом, в котором имеются данные о спонтанных абортах, о мертворожденных, о страданиях наследственными заболеваниями других членов семьи, дают серьезные основания для того, чтобы думать об их генезе и предпринимать соответствующие исследования для выявления хромосомных заболеваний.

Установление диагноза хромосомного заболевания имеет большое практическое значение. Особенно важно определить - является ли оно врожденным или наследственным. Используя возможности пренатальной диагностики, следует определить нормален ли плод или имеет отклонения в кариотипе и в зависимости от этого принять решение об абортировании беременной женщины. Это позволяет ограничить рождение дефектных детей. Такие возможности ясно показывают большое социальное и медицинское значение своевременной и точной диагностики каждого хромосомного заболевания.

Как известно, не менее половины сбалансированных аутосомных перестроек в популяции представлено реципрокными транслокациями .
Частота гетерозигот по реципрокным транслокациям оценивается как 1 на 600 супружеских пар . Реальный риск рождения жизнеспособных детей с несбалансированным кариотипом определяется характером реципрокной транслокации (спецификой хромосом, вовлеченных в перестройку, размерами транслоцированных сегментов) и может достигать 40 % .
Процессы конъюгации, рекомбинации и сегрегации транслоцированных хромосом в мейозе подробно рассмотрены в соответствующей литературе . Кратко характеризуя особенности поведения аберрантных хромосом отметим, что при гетерозиготном носительстве реципрокных транслокаций в профазе мейоза они образуют не бивалент, а комплекс из четырех хромосом (квадривалент). В зависимости от характера их сегрегации в анафазе возможно образование нескольких типов гамет, только одна из которых будет иметь нормальный и одна - сбалансированный набор хромосом, в то время как остальные гаметы будут иметь частичные трисомии или моносомии, т. е. будут несбалансированными (рис. 6.2). Пренебрегая редкими случаями сегрегации хромосом по типу смежного-2 и 3: 1, а также еще более усложняющими ситуацию обменами между различными участками нормальных и транслоцирован- ных хромосом, следует ожидать, что 25 % гамет окажутся нормальными, 25 % - сбалансированными и 50 % - несбалансированными.
Эти теоретически ожидаемые пропорции подтверждаются экспериментальными данными, полученными при непосредственном исследовании хромосомного набора в зрелых гаметах. Так, суммарная частота нормальных и сбалансированных сперматозоидов у мужчин-носителей различных реципрокных транслокаций составляет в среднем около 46 %, несбалансированных - 54 % . Однако преобладание какого-либо определенного типа сегрегации хромосом в сперматогенезе у гетерозигот по различным транслокациям с учетом особенностей хиазмообразования вряд ли можно считать установленным . Детальные исследования поведения реципрокных транслокаций в оогенезе отсутствуют, однако согласно данным литературы, частота несбалансированных кариотипов

Рис. 6.2. Схема транслокационного квадривалента и варианты сегрегации хромосом в анафазе I мейотического деления. При альтернативном расхождении (а) образуются нормальная и сбалансированная гаметы. Совместное (смежное) расхождение (б, в), при котором образуются 4 несбалансированные (с частичными трисомиями и моносомиями) гаметы. При смежном-1 типе сегрегации (б) в гамету попадают хромосомы с негомологичными центромерами - одна нормальная и одна аберрантная. При смежном-2 типе (в) в гамету попадают хромосомы с идентичными центромерами - нормальная и аберрантная. При сегрегации 3:1 (г) в одну из гамет попадают 3 хромосомы, в другую - только одна, при этом распределение хромосом из квадривалента может происходить равновероятным образом



Рис. 6.3. Случай несбалансированного кариотипа у плода при сегрегации хромосом 3:1 в мейозеу матери-носительницы реципрокной транслокации: а - кариотип плода 47,XX, +der(13); б - кариотип матери 46,ХХ,1(3;13)^21ц12). Метафазные пластинки из ФГА-стимулированных лимфоцитов. Окраска Q^.^/"Ас.О

Таблица 6.1. Результаты, пренатальной диагностики в группе носителей структурных аберраций хромосом


Тип аберрации

Носитель

Число
случаев

Кариотип плода

нормаль
ный

сбаланси
рованный

несбаланси
рованный

Реципрокные транслокации (n = 46)

Мать

30

5

17

8

Отец

12

4

7

1

Неизвестно

4

1

1

2

Робертсоновские транслокации (n = 40)

Мать

25

5

18

2

Отец

9

2

6

1

Неизвестно

6

0

3

3

Инверсии (n = 8)

Мать

4

3

1

0

Отец

4

2

2

0

Инверсии 9ph (n = 130)

Мать

34

8

26

0

Отец

29

9

18

2

Оба
родителя

1

0

1

0

Неизвестно

66

5

58

3

Всего


224

44

158

22

спериментально подтвержденный на мышах , остается открытым.
Таким образом, генетически несбалансированные гаметы, как сперматозоиды, так и ооциты, возникают чаще, чем они регистрируются при пренатальной диагностике и у потомков носителей транслокаций . Наиболее вероятным кажется предположение, что эти различия обусловлены не столько селекцией несбалансированных гамет в мейозе и на постмейотических стадиях сперматогенеза или неспособностью яйцеклетки к оплодотворению, сколько летальным эффектом большинства из несбалансированных хромосомных наборов на ранних стадиях эмбриогенеза.
В заключение следует еще раз подчеркнуть, что соотношение сбалансированных и несбалансированных гамет варьирует в зависимости от хромосом, затронутых перестройкой, а также от локализации точек разрыва. Однако во всех случаях их реальное соотношение существенно отличается от теоретически ожидаемого.

Реципрокная транслокация между хромосомами 4 и 20.

Для формирования транслокации необходимым условием является повреждение ДНК в виде двунитевых разрывов с последующей ошибкой репарации : неправильным воссоединением разрывов при репарации путём негомологичной рекомбинации или ошибочным выбором паралогичной вместо гомологичной последовательности ДНК при репарации путём гомологичной рекомбинации. Двунитевые разрывы ДНК могут возникать вследствие воздействия экзогенными факторами, такими как ионизирующее излучение или химиотерапия , а также вследствие воздействия на ДНК эндогенно образующимися свободными радикалами.

Обозначение транслокаций

Робертсоновские транслокации являются одним из наиболее распространенных типов врождённых хромосомных аномалий у человека. По некоторым данным, их частота составляет 1:1000 новорожденных. Их носители фенотипически нормальны, однако у них существует риск самопроизвольных выкидышей и рождения детей с несбалансированным кариотипом, который существенно варьирует в зависимости от хромосом, вовлеченных в слияние, а также от пола носителя. Большинство Робертсоновских транслокаций затрагивают хромосомы 13 и 14. В структуре обращаемости на пренатальную диагностику лидерами оказываются носители der(13;14) и der(14;21). Последний случай, а именно, Робертсоновская транслокация с участием хромосомы 21 приводит к так называемому «семейному» (наследуемому) синдрому Дауна .

Робертсоновские транслокации, возможно, являются причиной различий между числом хромосом у близкородственных видов. Показано, что два плеча 2-й хромосомы человека соответствуют 12 и 13 хромосомам шимпанзе. Возможно, 2-я хромосома образовалась в результате робертсоновской транслокации двух хромосом обезьяноподобного предка человека. Таким же образом объясняют тот факт, что различные виды дрозофилы имеют от 3 до 6 хромосом. Робертсоновские транслокации привели к появлению в Европе нескольких видов-двойников (хромосомные расы) у мышей группы видов Mus musculus , которые, как правило, географически изолированы друг от друга. Набор и, как правило, экспрессия генов при робертсоновских транслокациях не изменяются, поэтому виды практически неотличимы внешне. Однако они имеют разные кариотипы, а плодовитость при межвидовых скрещиваниях резко понижена.

Роль транслокаций в онкологических заболеваниях

В настоящее время описано около 500 рекуррентных сбалансированных хромосомных перестроек, специфически связанных с различными онкологическими заболеваниями . Большую часть этих перестроек представляют реципрокные транслокации. Изучение онкоспецифичных сбалансированных хромосомных аномалий на молекулярном уровне показало, что в их результате происходит либо дерегуляция гена (обычно повышенная экспрессия), находящегося около одной из точек разрыва, либо образуется гибридный ген из частей двух генов, ранее находившихся на разных хромосомах.

Филадельфийская хромосома

Первой описанной структурной геномной перестройкой, которая вызывает онкологическое заболевание, является так называемая филадельфийская хромосома, которая согласно Международной цитогенетической номенклатуре человека имеет собственное обозначение - Ph . Эта хромосома была названа в честь города в США, где работали её первооткрыватели П. Новелл (P. Nowell ) и Д. Хангерфорд (D. Hungerford ), сообщившие в 1960 г. о необычной маленькой хромосоме в кариотипе двух больных хроническим миелобластным лейкозом . Сейчас известно, что филадельфийская хромосома возникает вследствие реципрокной транслокации между хромосомами 9 и 22, и эта мутация вызывает 95 % случаев хронического миелобластного лейкоза. Также эта мутация является одной из самых распространённых при В-клеточном остром лимфобластном лейкозе взрослых . В результате транслокации t(9;22)(q34;q11) ген ABL1 из хромосомы 9 объединяется с геном BCR хромосомы 22. Активность нового химерного белка приводит к нечувствительности клетки к воздействию факторов роста и вызывает её безудержное деление .

Транслокации в биологической дозиметрии

В результате воздействия ионизирующего излучения в клетках образуются двунитевые разрывы ДНК, неправильная репарация которых приводит к формированию целого спектра хромосомных нарушений, включая транслокации. Количество хромосомных аберраций строго зависит от типа ионизирующего излучения, его дозы и мощности. Это обусловило возможность определения дозы облучения по частоте хромосомных аберраций в лимфоцитах периферической крови или клетках костного мозга , так называемую биологическую дозиметрию. Сбалансированные транслокации беспрепятственно передаются дочерним клеткам при митозе , их частота не меняется с течением времени, поэтому их частота в лимфоцитах может служить для ретроспективных оценок доз облучения .

Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.

Транслокация – это перемещение участка хромосомы. Бывают взаимные (реципрокные) и не взаимные (транспозиции) транслокации.

Реципрокные транслокации происходят в тех случаях, когда две негомологичные хромосомы обмениваются своими участками.

Особую группу транслокаций составляют робертсоновские транслокации (центрические слияния). Им подвергаются акроцентрические хромосомы – они теряют короткие плечи, а их длинные плечи соединяются.

Причина 4-5% случаев рождения ребёнка-дауника – робертсоновские транслокации. При этом происходит перемещение длинного плеча 21 хромосомы на одну из хромосом группы D (13, 14, 15, чаще вовлекается 14 хромосома).


Типы яйцеклеток сперматозоид зигота Последствия

14 + 14, 21 14,14,21 моносомия 21 (леталь)

14/21,21 + 14, 21 14/21,21,14,21 трисомия 21 (дауник)

21 + 14, 21 21,14,21, моносомия 14 (леталь)

14,14/21 + 14, 21 14,14/21,14,21 трисомия 14 (леталь)

14/21 + 14, 21 14/21,14,21 фенотипически здоров (носитель)

14, 21 + 14, 21 14,21,14,21 фенотипически здоров

Как видим, женщина с робертсоновской транслокацией, в кариотипе которой 45 хромосом может родить здорового ребенка.

1) дифференциальное окрашивание

2) фигура креста в профазу мейоза 1.

Траспозиции. Мобильные генетические элементы. Механизмы перемещения МГЭ по геному и их значение.

Если транслокации не носят характера взаимности, то говорят о транспозиции.

Особую группу транспозонов составляют мобильные генетические элементы (МГЭ), или прыгающие гены, которые обнаружены у всех организмов. У мушки дрозофилы они составляют 5% генома. У человека МГЭ объединяют в семейство ALU.

МГЭ состоят из 300- 400 нуклеотидов, повторяющихся в геноме у человека 300 тысяч раз.

На концах МГЭ находятся повторы нуклеотидов, состоящие из 50-100 нуклеотидов. Повторы могут быть прямыми и обратными. Повторы нуклеотидов, по-видимому, влияют на перемещение МГЭ.

Выделяют два варианта перемещения МГЭ по геному.

1. с помощью процесса обратной транскрипции. Для этого необходим фермент обратная транскриптаза (ревертаза). Этот вариант протекает в несколько этапов:

на ДНК фермент РНК-полимераза (другое название – транскриптаза) синтезирует мРНК,

на мРНК фермент обратная транскриптаза синтезирует одну цепь ДНК,

фермент ДНК-полимераза обеспечивает синтез второй цепочки ДНК,

синтезированный фрагмент замыкается в кольцо,

кольцо ДНК встраивается в другую хромосому или в другое место этой же хромосомы.

2. с помощью фермента транспозазы, который вырезает МГЭ и переносит его в другую хромосому или в другое место этой же хромосомы

В ходе эволюции МГЭ играли положительную роль, т.к. они осуществляли перенос генетической информации от одних видов организмов к другим. Важную роль в этом играли ретровирусы, которые содержат в качестве наследственного материала РНК, а также содержат обратную транскриптазу.

МГЭ перемещаются по геному очень редко, одно перемещение на сотни тысяч событий в клетке (частота перемещений 1 х 10 –5 ).

В каждом конкретном организме МГЭ положительной роли не играют, т.к. перемещаясь по геному, они изменяют работу генов, вызывают генные и хромосомные мутации.

Индуцированный мутагенез. Физические, химические и биологические мутагенные факторы.

Индуцированные мутации возникают при действии на организм мутагенных факторов, которые делятся на 3 группы:

Физические (УФЛ, рентгеновское и радиационное излучения, электромагнитные поля, высокие температуры).

Так ионизирующее излучение может действовать непосредственно на молекулы ДНК и РНК, вызывая в них повреждения (генные мутации). Косвенное воздействие этого мутагена на геном клеток заключается в образовании Н2О2, ОН - , О2 - , а они уже повреждают ДНК.

Химические мутагенные факторы. Существует свыше 2 млн. химических веществ, способных вызывать мутации. Это соли тяжелых металлов, химические аналоги азотистых оснований (5-бромурацил), алкилирующие соединения (СН3, С2 Н5).

Данная брошюра содержит информацию о том, что такое хромосомные транслокации, как они могут наследоваться и какие проблемы они могут вызывать. Данная брошюра не может заменить Ваше общение с врачом, однако она может помочь Вам при обсуждении интересующих Вас вопросов.

Что такое хромосомные транслокации?

Для того, чтобы понять, что такое хромосомные транслокации, вначале будет полезно узнать, что такое гены и хромосомы.

Что такое гены и хромосомы?

Наше тело состоит из миллионов клеток. Большинство клеток содержат полный набор генов. У человека тысячи генов. Гены можно сравнить с инструкциями, которые используются для контроля роста и согласованной работы всего организма. Гены отвечают за множество признаков нашего организма, например, за цвет глаз, группу крови или рост.

Гены расположены на нитевидных структурах, называемых хромосомами. Как правило, в большинстве клеток организма содержится по 46 хромосом. Хромосомы передаются нам от родителей – 23 от мамы, и 23 от папы, поэтому мы часто похожи на своих родителей. Таким образом, у нас два набора по 23 хромосомы, или 23 пары хромосом. Так как на хромосомах расположены гены, мы наследуем по две копии каждого гена, по одной копии от каждого из родителей. Хромосомы (следовательно, и гены) состоят из химического соединения, называемого ДНК.

Рисунок 1: Гены, хромосомы и ДНК

Хромосомы (см. Рисунок 2), пронумерованные от 1 до 22, одинаковые у мужчин и у женщин. Такие хромосомы называют аутосомами. Хромосомы 23-й пары различны у женщин и мужчин, и их называют половыми хромосомами. Есть 2 варианта половых хромосом: Х-хромосома и Y-хромосома. В норме у женщин присутствуют две Х-хромосомы (ХХ), одна из них передается от матери, другая – от отца. В норме у мужчин есть одна X-хромосома и одна Y-хромосома (XY), при этом Х-хромосома передается от матери, а Y-хромосома - от отца. Так, на Рисунке 2 изображены хромосомы мужчины, так как последняя, 23-я, пара представлена сочетанием XY.

Рисунок 2: 23 пары хромосом, распределенные по размеру; хромосома под номером 1 – самая большая. Две последние хромосомы – половые.

Правильный хромосомный набор является очень важным для нормального развития человека. Это связано с тем, что гены, которые дают «инструкции к действиям» клеткам нашего организма, находятся на хромосомах. Любое изменение количества, размера или структуры наших хромосом может привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка.

Что такое транслокация?

Транслокация означает, что существует какая-либо необычная структура хромосом. Причины для этого могут быть разные:

  • А) перестройка возникла во время созревания яйцеклетки или сперматозоида, или при оплодотворении
  • Б) перестройка хромосомы была унаследована от матери или отца

Существует два основных типа транслокаций: реципрокная транслокация и робертсоновская траслокация.

Реципрокные транслокации

Реципрокные транслокации возникают в том случае, если два фрагмента из двух разных хромосом отрываются и меняются местами

Рисунок 3: Как возникает реципрокная транслокация

две нормальные хромосом из пары части двух хромосом отрываются и снова прикрепляются к другим хромосомах

Робертсоновские транслокации

Робертсоновские транслокации возникают в том случае, когда одна хромосома соединяется с другой. На Рисунке 4 показана робертсоновская транслокация, в которую вовлечены две хромосомы

Рисунок 4: Как возникает робертсоновская транслокация

две нормальные хромосом из пары Робертсоновская транслокация: хромосома одной пары оказываются прикрепленной к хромосоме из другой пары

Почему возникают транслокации?

Несмотря на то, что транслокации встречаются довольно часто (примерно у 1 человека из 500), причины их возникновения остаются неясными. Мы знаем, что хромосомы, по-видимому, могут разрываться и восстанавливаться во время процесса созревания сперматозоида или яйцеклетки, или при оплодотворении, и лишь в некоторых случаях это приводит к проблемам. Мы не можем контролировать эти изменения.

Когда это может приводить к проблемам?

В обоих рассмотренных нами примерах хромосомные перестройки происходили таким образом, что общее количество хромосомного материала не менялось. Такие перестройки называются сбалансированными транслокациями.

Как правило, человек, имеющий сбалансированную транслокацию, не страдает от этого, и часто даже не подозревает, что в его (ее) хромосомах есть перестройка. И важным это может оказаться только в случае, когда у него (или у нее) появляется ребенок. Это связано с тем, что у ребенка может возникнуть несбалансированная транслокация.

Несбалансированные транслокации

Если один из родителей является носителем сбалансированной транслокации, существует вероятность, что у ребенка возникнет несбалансированная транслокация, при которой присутствует лишний фрагмент одной хромосомы и/или потеря части материала другой хромосомы.

Часто бывает так, что ребенок рождается с транслокацией, несмотря на то, что у обоих родителей нормальные хромосомы. Это называется «вновь возникшей» перестройкой, или перестройкой «de novo» (от латинского слова). В этом случае вероятность повторного рождения ребенка с транслокацией у этих родителей крайне мала.

Ребенок, имеющий несбалансированную транслокацию, может иметь трудности в обучении, задержку развития и другие проблемы со здоровьем. Выраженность проявлений зависит от того, какие участки хромосомы оказались вовлеченными в перестройку, и какой материал хромосомы присутствует в избытке, или отсутствует, так как некоторые районы хромосомы важнее других.

Если у родителя есть сбалансированная транслокация, всегда ли она передается ребенку?

  • Необязательно, возможны несколько исходов каждой беременности:
  • Ребенок может получить совершенно нормальный набор хромосом.
  • Ребенок может унаследовать такую же сбалансированную транслокацию, которая есть у родителя. В большинстве таких случаев транслокация не будет иметь последствий для ребенка.
  • Ребенок может унаследовать несбалансированную транслокацию, и тогда после рождения он может иметь трудности в обучении, задержка развития или другие проблемы со здоровьем.
  • Возможно самопроизвольное прерывание беременности.

Таким образом, у носителя сбалансированной транслокации могут рождаться здоровые дети, и во многих случаях происходит именно так. Однако, для носителя сбалансированной транслокации существует повышенный риск рождения ребенка с определенной степенью задержки развития, при этом тяжесть проявлений зависит от конкретного типа транслокации.

Диагностика хромосомных транслокаций

Возможно проведение генетического анализа для выявления носительства транслокации. Берется образец крови, и клетки крови исследуют в специализированной лаборатории для выявления хромосомных транслокаций. Такой анализ называется кариотипированием. Также возможно проведение теста во время беременности для выявления хромосомных транслокаций. Это называется пренатальной диагностикой, и этот вопрос следует обсудить с врачом-генетиком. Более подробная информация на эту тему представлена в брошюрах «Биопсия ворсин хориона» и «Амниоцентез».

Какое отношение это имеет к другим членам семьи?

Если у одного из членов семьи обнаружена транслокация, возможно, Вы захотите обсудить этот вопрос с другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ хромосом в клетках крови) для определения носительства транслокации. Это может быть особенно важно для родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями транслокации, они не могут передать ее своим детям. Если же они являются носителями, то им могут предложить пройти обследование во время беременности для анализа хромосом плода.

Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.

Читайте также: