Влияние антибиотиков на антимикробные пептиды кишечника

Обновлено: 18.05.2024

Российский исследователь изучил антимикробные пептиды человека, оценил, сколько их необходимо для уничтожения патогена, а также степень влияния на разные бактерии. В результате он предложил новую, основанную на их применении стратегию борьбы с устойчивыми к антибиотикам микроорганизмами. Статья ученого опубликована в журнале PeerJ.

Устойчивость к антибиотикам — одна из наиболее серьезных угроз здоровью человечества, продовольственной безопасности и развитию. Все больше бактериальных инфекционных заболеваний, таких как пневмония, туберкулез, гонорея и сальмонеллез, становится труднее лечить из-за снижения эффективности антибиотиков. Один из видов новых противомикробных препаратов — антимикробные пептиды. Это фрагменты белков, которые вырабатывают живые организмы для борьбы с разными инфекциями. Поддержанный грантом Президентской программы Российского научного фонда сотрудник Ставропольского государственного медицинского университета Альберт Болатчиев изучил, как с микробами борются антимикробные пептиды человека дефензины HNP-1, hBD-1 и hBD-3. Эти пептиды были выбраны как наиболее перспективные, поскольку они действуют на самые разные микроорганизмы.

«Самое интересное, что мы выяснили, — даже если бактерия очень устойчива к разным антибиотикам, она все равно погибает при воздействии антимикробных пептидов, — рассказывает Болатчиев. — Один из путей применения и внедрения антимикробных пептидов в медицину — поиск способов запустить синтез собственных пептидов человека в комбинации с введением “обычных” антибиотиков. Эта стратегия, с одной стороны, может обеспечить преодоление резистентности к антибактериальным препаратам, а с другой стороны, подарит недорогой способ терапии. Введение дефензинов в организм извне — это дорого, поскольку синтез пептидов сегодня — достаточно затратная технология. Мы же хотим в будущем сделать так, чтобы наш организм сам вырабатывал эти дефензины».

Автор изучил действие дефензинов против 27 штаммов золотистого стафилококка и 24 штаммов кишечной палочки. Для того чтобы проверить «силу» антибактериального действия дефензинов (а также их комбинации с антибиотиками), он использовал стандартный метод серийных разведений, с его помощью можно было визуально оценить, какая концентрация вещества необходима для подавления роста колоний. Кроме того, применение методики позволяет оценивать комбинированное противомикробное действие двух веществ на бактериальные возбудители.

Ученый показал, что если комбинировать антибактериальные препараты с дефензинами, то можно снизить количество первых в несколько раз. Кроме того, выяснилось, что устойчивость бактерии к конкретным антибиотикам никак не влияет на их чувствительность к антимикробным пептидам. Полученные данные можно применять для поиска и разработки новых стратегий преодоления резистентности к используемым в клинической практике противомикробным препаратам.

Вместе с антибиотиками

Противомикробные пептиды человека против бактериальных инфекций

Ученые исследовали антимикробные пептиды человека, их количество, необходимое для уничтожения возбудителя болезни, и степень влияния на те или иные бактерии. На основе результатов была предложена новая стратегия борьбы с патогенными бактериями, устойчивыми к антибиотикам. В дальнейшем такие исследования помогут создать новые противомикробные лекарства и методы лечения, основанные на применении антимикробных пептидов. Исследование проведено при поддержке Президентской программы Российского научного фонда (РНФ).


По данным ВОЗ, устойчивость к антибиотикам — это одна из наиболее серьезных угроз для здоровья человечества, продовольственной безопасности и развития. Все больше бактериальных инфекционных заболеваний — например, пневмонию, туберкулез, гонорею и сальмонеллез — становится труднее лечить из-за снижения эффективности антибиотиков.

«Борьба с бактериями, которые не чувствительны к современным препаратам, очень важна. Это связано, во-первых, с растущей летальностью — каждый год более 700 тыс. человек умирает от инфекций, устойчивых к антибиотикам, уже к середине XXI века эта цифра достигнет 10 млн смертей каждый год. Во-вторых, устойчивые к антибиотикам бактерии несут колоссальный экономический ущерб системе здравоохранения: пациенты с такими инфекциями гораздо дольше лежат в стационаре, у них выше риск летального исхода, выше риск развития побочных эффектов в связи с длительностью лечения. Очевидно, что нам нужен принципиально новый подход к борьбе с антибиотикоустойчивыми возбудителями»,— отмечает Альберт Болатчиев, руководитель проекта по гранту РНФ, кандидат медицинских наук, сотрудник Ставропольского государственного медицинского университета.

Один из видов противомикробных препаратов будущего — антимикробные пептиды. Это фрагменты белков, которые вырабатывают живые организмы для борьбы с разными инфекциями. Сотрудник Ставропольского государственного медицинского университета исследовал, как с микробами борются антимикробные пептиды человека дефензины, а именно HNP-1, hBD-1 и hBD-3. Эти пептиды были выбраны как наиболее перспективные, поскольку они действуют на самые разные микроорганизмы (бактерии, вирусы, грибы).

Противомикробные пептиды человека предложили использовать вместе с антибиотиками для лечения бактериальных инфекций

Противомикробные пептиды человека предложили использовать вместе с антибиотиками для лечения бактериальных инфекций

Хотя прежде другие ученые проводили исследования этих пептидов, и оставались неясными конкретные цифры. Например, какое минимальное количество лекарства необходимо для уничтожения конкретного возбудителя — золотистого стафилококка или кишечной палочки — или какая фракционная концентрация необходима для борьбы с большим числом бактерий с разной степенью устойчивости к антибиотикам.

Противомикробное действие дефензинов автор статьи исследовал против 27 штаммов золотистого стафилококка и 24 штаммов кишечной палочки — в общей сложности было проанализировано более 50 различных штаммов данных

возбудителей. Для того чтобы проверить «силу» антибактериального действия дефензинов (а также их комбинации с антибиотиками), использовали стандартный метод серийных разведений, так называемый метод шахматной доски. Его простота и удобство в том, что можно визуально увидеть какая концентрация вещества необходима для подавления роста бактериальных колоний. Кроме того, применение методики позволяет оценивать комбинированное противомикробное действие двух веществ на бактериальных возбудителей.

«Простота и удобство метода заключается в том, что все видно на глаз. Само исследование занимает 48 часов. Конечно, есть и свои сложности — нужно очень много разных бактериальных штаммов, то есть бактерий одного вида, но с разными свойствами и с разной чувствительностью к антибиотикам. Чем больше разных штаммов, тем выше точность эксперимента»,— поясняет исследователь.

Так, ученому удалось показать, что если комбинировать антибактериальные препараты, например, рифампицин и амикацин вместе с дефензинами HNP-1 или hBD-3, то можно снизить количество первых в несколько раз. Это значит, что в перспективе мы сможем «вернуть» новую жизнь антибиотикам, которые утратили свою эффективность. Кроме того, выяснилось, что то, к каким именно антибиотикам устойчива конкретная бактерия (фенотип антибиотикорезистентности), никак не влияет на чувствительность изученных бактерий к антимикробным пептидам. Таким образом, для антимикробных пептидов (дефензинов) не имеет значения, насколько бактерии «сильны» против обычных антибиотиков — дефензины с одинаковой силой уничтожают любых возбудителей.

«Самое интересное, что мы выяснили,— это то, что даже если бактерия очень устойчива к разным антибиотикам, она все равно погибает при воздействии антимикробных пептидов»,— подчеркивает Альберт Болатчиев.

Альберт Болатчиев, руководитель проекта по гранту РНФ, кандидат медицинских наук, сотрудник Ставропольского государственного медицинского университета

Альберт Болатчиев, руководитель проекта по гранту РНФ, кандидат медицинских наук, сотрудник Ставропольского государственного медицинского университета

По словам ученого, полученные данные можно использовать для поиска и разработки новых стратегий преодоления резистентности к используемым в клинической практике противомикробным препаратам.

«Один из путей применения и внедрения антимикробных пептидов в медицину — поиск способов запустить синтез собственных пептидов человека в комбинации с введением “обычных” антибиотиков. Эта стратегия, с одной стороны, может обеспечить преодоление резистентности к антибактериальным препаратам, а с другой стороны, подарит недорогой способ терапии. Введение дефензинов в организм извне — это дорого, поскольку синтез пептидов сегодня — достаточно затратная технология. Мы же хотим в будущем сделать так, чтобы наш организм сам вырабатывал эти дефензины»,— рассуждает Альберт Болатчиев.

Сегодня еще много нерешенных вопросов, не позволяющих испытывать дефензины для лечения инфекций человека.

«Во-первых, это очень дорогие молекулы. Во-вторых, они быстро разрушаются, и их надо очень много. В-третьих, есть ограничения, связанные с их токсичностью в высоких дозах. Ученые рассматривают несколько решений этих задач. Так, можно вводить низкие дозы дефензинов в комбинации с обычными антибиотиками, что мы и показали. Кроме того, можно найти способы стимуляции синтеза собственных дефензинов — мы можем заставить наш организм вырабатывать больше пептидов. Также можно было бы разрабатывать новые — короткие и дешевые в производстве — модифицированные дефензины. Как раз в дальнейших исследованиях я планирую проверить данные предположения»,— заключает исследователь.

«Antibacterial Activity of Human Defensins against Staphylococcus Aureus and Escherichia Coli»; Albert Bolatchiev; журнал PeeJ — Life & Environment, ноябрь 2020 г

Противомикробные пептиды человека предложили использовать вместе с антибиотиками для лечения бактериальных инфекций

Ученые исследовали антимикробные пептиды человека, их количество, необходимое для уничтожения возбудителя болезни, и степень влияния на те или иные бактерии. На основе результатов была предложена новая стратегия борьбы с патогенными бактериями, устойчивыми к антибиотикам. В дальнейшем такие исследования помогут создать новые противомикробные лекарства и методы лечения, основанные на применении антимикробных пептидов. Результаты исследования, проведенного при поддержке Президентской программы Российского научного фонда (РНФ), опубликованы в журнале PeerJ.



По данным ВОЗ, устойчивость к антибиотикам – это одна из наиболее серьезных угроз для здоровья человечества, продовольственной безопасности и развития. Все больше бактериальных инфекционных заболеваний – например, пневмонию, туберкулез, гонорею и сальмонеллез – становится труднее лечить из-за снижения эффективности антибиотиков.

«Борьба с бактериями, которые не чувствительны к современным препаратам, очень важна. Это связано, во-первых, с растущей летальностью – каждый год более 700 тысяч человек умирает от инфекций, устойчивых к антибиотикам, уже к середине XXI века эта цифра достигнет 10 миллионов смертей каждый год. Во-вторых, устойчивые к антибиотикам бактерии несут колоссальный экономический ущерб системе здравоохранения – пациенты с такими инфекциями гораздо дольше лежат в стационаре, у них выше риск летального исхода, выше риск развития побочных эффектов в связи с длительностью лечения. Очевидно, что нам нужен принципиально новый подход к борьбе с антибиотикоустойчивыми возбудителями», – отмечает Альберт Болатчиев, руководитель проекта по гранту РНФ, кандидат медицинских наук, сотрудник Ставропольского государственного медицинского университета (Ставрополь).

Один из видов противомикробных препаратов будущего – антимикробные пептиды. Это фрагменты белков, которые вырабатывают живые организмы для борьбы с разными инфекциями. Сотрудник Ставропольского государственного медицинского университета исследовал, как с микробами борются антимикробные пептиды человека дефензины, а именно HNP-1, hBD-1 и hBD-3. Эти пептиды были выбраны как наиболее перспективные, поскольку они действуют на самые разные микроорганизмы (бактерии, вирусы, грибы).

Хотя прежде другие ученые проводили исследования этих пептидов, оставались неясными конкретные цифры. Например, какое минимальное количество лекарства необходимо для уничтожения конкретного возбудителя – золотистого стафилококка или кишечной палочки, или какая фракционная концентрация необходима для борьбы с большим числом бактерий с разной степенью устойчивости к антибиотикам.

Противомикробное действие дефензинов автор статьи исследовал против 27 штаммов золотистого стафилококка и 24 штаммов кишечной палочки – в общей сложности было проанализировано более 50 различных штаммов данных возбудителей. Для того чтобы проверить «силу» антибактериального действия дефензинов (а также их комбинации с антибиотиками), использовали стандартный метод серийных разведений, так называемый метод «шахматной доски». Простота и удобство метода в том, что можно визуально увидеть какая концентрация вещества необходима для подавления роста бактериальных колоний. Кроме того, применение методики позволяет оценивать комбинированное противомикробное действие двух веществ на бактериальных возбудителей.

«Простота и удобство метода заключается в том, что все видно на глаз. Само исследование занимает 48 часов. Конечно, есть и свои сложности – нужно очень много разных бактериальных штаммов, то есть бактерий одного вида, но с разными свойствами и с разной чувствительностью к антибиотикам. Чем больше разных штаммов, тем выше точность эксперимента», – поясняет исследователь.

Так, ученому удалось показать, что если комбинировать антибактериальные препараты, например, рифампицин и амикацин вместе с дефензинами HNP-1 или hBD-3, то можно снизить количество первых в несколько раз. Это значит, что в перспективе мы сможем «вернуть» новую жизнь антибиотикам, которые утратили свою эффективность. Кроме того, выяснилось, что то, к каким именно антибиотикам устойчива конкретная бактерия (фенотип антибиотикорезистентности), никак не влияет на чувствительность изученных бактерий к антимикробным пептидам. Таким образом, для антимикробных пептидов (дефензинов) не имеет значения, насколько бактерии «сильны» против обычных антибиотиков – дефензины с одинаковой силой уничтожают любых возбудителей.

«Самое интересное, что мы выяснили, – это то, что даже если бактерия очень устойчива к разным антибиотикам, она все равно погибает при воздействии антимикробных пептидов», – подчеркивает Альберт Болатчиев.

«Один из путей применения и внедрения антимикробных пептидов в медицину – поиск способов запустить синтез собственных пептидов человека в комбинации с введением «обычных» антибиотиков. Эта стратегия, с одной стороны, может обеспечить преодоление резистентности к антибактериальным препаратам, а с другой стороны, подарит недорогой способ терапии. Введение дефензинов в организм извне – это дорого, поскольку синтез пептидов сегодня – достаточно затратная технология. Мы же хотим в будущем сделать так, чтобы наш организм сам вырабатывал эти дефензины», – рассуждает Альберт Болатчиев.

«Во-первых, это очень дорогие молекулы. Во-вторых, они быстро разрушаются, и их надо очень много. В-третьих, есть ограничения, связанные с их токсичностью в высоких дозах. Ученые рассматривают несколько решений этих задач. Так, можно вводить низкие дозы дефензинов в комбинации с обычными антибиотиками, что мы и показали. Кроме того, можно найти способы стимуляции синтеза собственных дефензинов – мы можем заставить наш организм вырабатывать больше пептидов. Также можно было бы разрабатывать новые – короткие и дешевые в производстве – модифицированные дефензины. Как раз в дальнейших исследованиях я планирую проверить данные предположения», – заключает исследователь.

Антимикробные пептиды — возможная альтернатива традиционным антибиотикам


Обзор

Антимикробный пептид на поверхности модели бактериальной мембраны. Связывание пептида приводит к дестабилизации мембраны и проникновению воды внутрь бислоя.

Автор
Редакторы

После появления пенициллина более чем 80 лет человечество ведет ожесточенную борьбу с патогенными микроорганизмами. Широкое использование антибиотиков в терапии инфекционных заболеваний породило новые устойчивые к ним формы бактерий. На пороге XXI века медики и фармацевты столкнулись с проблемой поиска альтернативы традиционным антибиотикам. Для этой цели использование антимикробных пептидов может оказаться весьма эффективным.

Уроки «80-летней войны»

Со времен открытия Флемингом пенициллина в 1928 г. фармацевтами были созданы тысячи различных антибиотиков. Во второй половине XX века бытовало мнение, что, благодаря вакцинации и активному использованию антибиотиков, с инфекционными заболеваниями будет покончено раз и навсегда. Однако быстрой и легкой победы над патогенными микроорганизмами достичь не удалось. Фактически, человечество простилось только с оспой. В цивилизованных странах в последние годы часто наблюдаются рецидивы ряда «забытых болезней» (бубонная чума, коклюш и пр.), в то время как в странах «третьего мира» ни о какой, даже временной победе над инфекциями, говорить не приходиться. И это не единственная проблема. Оказалось, что любые бактерии способны достаточно быстро (от нескольких месяцев до нескольких лет) выработать устойчивость (резистентность) к практически любому антибиотику [1]. Таким образом, стремительный рост числа вводимых в клиническую практику структурно новых антибиотиков, наблюдавшийся в середине прошлого столетия, сменился длительным инновационным кризисом, который продолжается и сегодня [2]. Более того, широкое применение антибиотиков в качестве лекарственных препаратов привело к накоплению устойчивых форм микроорганизмов. Распространены случаи устойчивости целого ряда патогенов человека (Enterococcus faecalis, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus, Streptococcus pneumoniae, Vibrio cholerae и пр.) практически к любому из применяемых препаратов [3].


Рисунок 1. Представители различных групп антимикробных пептидов.
1 — Линейные α-спиральные; 2 — не имеющие характерной структуры, напр. богатые определенной аминокислотой; 3 — дефензины; 4 — лантибиотики (низин).
Основная цепь пептидов изображена в виде ленты (1, 2). Фрагменты β-слоя представлены стрелками (3). Для низина (4) показаны также боковые цепи остатков.

Антимикробные пептиды

По-видимому, принципиально новым классом природных антибиотиков, которые могут прийти на смену традиционным препаратам, являются так называемые антимикробные пептиды [4]. Это относительно короткие молекулы (в среднем порядка 30–40 аминокислот), способные убивать клетки микроорганизмов. Антимикробные пептиды служат первичной мерой защиты от патогенов и задействованы в системе врожденного иммунитета. На сегодняшний день охарактеризовано более 800 таких пептидов. Они включают в себя молекулы из многих тканей и типов клеток беспозвоночных, позвоночных, растений и грибов; некоторые хемокины, цитокины, нейропептиды, нейрогормоны и фрагменты белков. Также ряд пептидов производится собственно микроогранизмами. Например, Lactococcus casea, молочнокислые бактерии — популярная добавка ко всяким «иммунизирующим» йогуртам, — продуцируют высокоактивный пептид низин.

Несмотря на огромное разнообразие, на основании структурной организации антимикробные пептиды можно разделить на несколько групп:

  • линейные α-спиральные пептиды (напр., магаинин, меллитин, цекропин);
  • пептиды, богатые определенной аминокислотой, напр., гистидином или пролином;
  • пептиды, имеющие сложную пространственную организацию, содержащие дисульфидные мостики, тиоэфирные циклы и др. К ним относятся дефензины, протегрины и лантибиотики — высокоактивные бактериальные пептиды (напр., низин — см. выше).

Тем не менее, для большинства таких пептидов характерно несколько общих черт: высокий положительный заряд (+2 — +9), пространственное разделение гидрофобных и гидрофильных участков молекулы (амфифильность). Амфифильность является важной особенностью антимикробных пептидов, которая обеспечивает возможность одновременно выгодно взаимодействовать с гидрофобным ядром липидной мембраны и полярным окружением (например, с водой).

Механизмы действия

Выделяют два основных типа воздействия антимикробных пептидов на клетки: ингибирование метаболитических процессов или нарушение целостности клеточной мембраны [5]. Большинство антимикробных пептидов вызывают гибель клетки по второму механизму. Лишь для некоторых пептидов показано действие по первому типу, среди них лантибиотики, которые селективно связываются с предшественником бактериальной стенки [6]. Для того, чтобы достигнуть плазматической бактериальной мембраны, пептиды предварительно должны преодолеть несколько слоев клеточной стенки. В случае грам-отрицательных бактерии она состоит из внешней липополисахаридной мембраны и пептидогликанового слоя. У грам-положительных бактерий внешняя мембрана отсутствует, однако пептидогликановый слой развит гораздо сильнее. Пептиды обычно беспрепятственно достигают плазматической мембраны, и именно ее разрушение приводит гибели клетки.

Перспективы использования антимикробных пептидов в медицине


Рисунок 2. Антимикробный пептид рамопланин (Ramoplanin).
Продукт нерибосомального синтеза в микроорганизмах рода Actinomycetes spp. Механизм действия основан на связывании с предшественником бактериальной стенки липидом II. На данный момент находится на клинических испытаниях фазы III в качестве антибиотика против инфекций дыхательных путей (в первую очередь, стафилококков).

Несмотря на то, что для антимикробных пептидов характерно довольно высокие действующие концентрации (~10 −7 —10 −6 моль, 10 −9 моль у лантибиотиков) и низкая селективность, они обладают некоторыми преимуществами: способность быстро убивать клетки-мишени, широкий спектр действия, активность в отношении штаммов, резистентных к другим антибиотикам, а также относительная трудность в развитии устойчивости. Поскольку некоторые антимикробные пептиды обладают цитотоксическим эффектом (действуют на эукариотические клетки), наиболее эффективно они могут быть использованы при лечении заболеваний наружных покровов, слизистых — без введения в кровь пациента. На сегодняшний день такие пептиды активно используются для создания новых лекарственных препаратов. Наиболее успешным примером, является циклический пептидный антибиотик рамопланин, который уже находится на стадии клинических испытаний для лечения инфекционных заболеваний дыхательных путей. Также показано, что ингаляции смеси, содержащей антимикробные пептиды, являются эффективными в терапии туберкулеза.

Все это позволяет рассматривать описанные выше молекулы в качестве основы для создания эффективных лекарств, особенно на фоне снижения потенциала обычных антибиотиков.

Антимикробные пептиды помогают антибиотикам


Ученые исследовали антимикробные пептиды человека, их количество, необходимое для уничтожения возбудителя болезни, и степень влияния на те или иные бактерии. На основе результатов была предложена новая стратегия борьбы с патогенными бактериями, устойчивыми к антибиотикам. Результаты исследования, проведенного при поддержке Президентской программы Российского научного фонда (РНФ), опубликованы в журнале PeerJ, кратко о них рассказывается на сайте РНФ.

По данным ВОЗ, устойчивость к антибиотикам — это одна из наиболее серьезных угроз для здоровья человечества, продовольственной безопасности и развития. Всё больше бактериальных инфекционных заболеваний — например, пневмонию, туберкулез, гонорею и сальмонеллез — становится труднее лечить из-за снижения эффективности антибиотиков. Один из видов противомикробных препаратов будущего — антимикробные пептиды, фрагменты белков, которые вырабатывают живые организмы для борьбы с инфекциями. Сотрудник Ставропольского государственного медицинского университета Альберт Болатчиев исследовал, как с микробами борются антимикробные пептиды из группы дефензинов, а именно HNP-1, hBD-1 и hBD-3. Они считаются наиболее перспективными, поскольку действуют на самые разные микроорганизмы (бактерии, вирусы, грибы).

Хотя дефензины уже изучались ранее, многое о них оставалось неизвестным. Например, какое минимальное количество вещества необходимо для уничтожения конкретного возбудителя — золотистого стафилококка или кишечной палочки, или какая фракционная концентрация необходима для борьбы с большим числом бактерий с разной степенью устойчивости к антибиотикам.

Противомикробное действие дефензинов автор статьи исследовал против 27 штаммов золотистого стафилококка и 24 штаммов кишечной палочки. Для того чтобы проверить «силу» антибактериального действия дефензинов (а также их комбинации с антибиотиками), использовали стандартный метод серийных разведений, так называемый метод «шахматной доски». Простота и удобство метода в том, что можно визуально наблюдать, какая концентрация вещества необходима для подавления роста бактериальных колоний. Кроме того, применение методики позволяет оценивать комбинированное противомикробное действие двух веществ на бактериальных возбудителей.

«Простота и удобство метода заключаются в том, что всё видно на глаз. Само исследование занимает 48 часов. Конечно, есть и свои сложности: нужно очень много разных бактериальных штаммов, то есть бактерий одного вида, но с разными свойствами и с разной чувствительностью к антибиотикам. Чем больше разных штаммов, тем выше точность эксперимента», — поясняет Альберт Болатчиев.

Удалось показать, что, если комбинировать антибактериальные препараты, например, рифампицин и амикацин, с дефензинами HNP-1 или hBD-3, можно снизить количество первых в несколько раз. Кроме того, выяснилось, что то, к каким именно антибиотикам устойчива конкретная бактерия (фенотип антибиотикорезистентности), никак не влияет на чувствительность изученных бактерий к антимикробным пептидам.

Сегодня еще много нерешенных вопросов, не позволяющих испытывать дефензины для лечения инфекций человека. «Во-первых, это очень дорогие молекулы. Во-вторых, они быстро разрушаются и их надо очень много. В-третьих, есть ограничения, связанные с их токсичностью в высоких дозах. Ученые рассматривают несколько решений этих задач. Так, можно вводить низкие дозы дефензинов в комбинации с обычными антибиотиками, что мы и показали. Кроме того, можно найти способы стимуляции синтеза собственных дефензинов — мы можем заставить наш организм вырабатывать больше пептидов. Также можно было бы разрабатывать новые — короткие и дешевые в производстве — модифицированные дефензины. Как раз в дальнейших исследованиях я планирую проверить данные предположения», — рассуждает Альберт Болатчиев.

Читайте также: