Фармакогенетика: определение, задачи

Обновлено: 18.05.2024

Клиническая фармакогенетика — это раздел клинической фармакологии и клинической генетики, изучающий место и роль генетических факторов в формировании ответа организма человека на лекарственные средства (ЛС): эффективность, не эффективность, развитие неблагоприятных побочных реакций (НЛР). Закономерности, выявляемые фармакогенетикой, позволяют врачу индивидуально подходить к выбору как самих ЛС, так и их доз у каждого конкретного пациента, обеспечивая максимально эффективную и безопасную фармакотерапию. Генетические особенности пациентов, ассоциированные с изменениями фармакологического ответа, выявляются при проведении фармакогенетического тестирования. Фармакогенетический тест — это выявление конкретных генотипов, ассоциированных с изменением фармакологического ответа. В основе таких тестов лежит полимеразная цепная реакция (ПЦР). При этом в качестве источника ДНК для ПЦР (т. е. генетического материала) используются чаще всего кровь больного или соскоб буккального эпителия. Сбор этого биологического материала у больного не требует предварительной подготовки. Результаты фармакогенетического теста представляют собой идентифицированные генотипы больного по тому или иному полиморфному маркеру. Как правило, врач-клинический фармаколог интерпретирует результаты фармакогенетического теста — формулирует рекомендации по выбору ЛС и его режима дозирования для конкретного пациента. Применение таких тестов позволяет заранее прогнозировать фармакологический ответ на ЛС и персонализировано подойти к выбору ЛС и его режима дозирования, а иногда и тактику ведения пациентов. В будущем ожидается увеличение количества фармакогенетических тестов, которые целесообразно использовать в клинической практике для персонализации выбора ЛС и их доз, также как и повышение доступности фармакогенетического тестирования для российских врачей и пациентов.

Ключевые слова

Раскрытие информации о конфликте интересов:

Авторы заявляют об отсутствии конфликта интересов.

Информация о статье:

Депонировано (дата): 05.06.2018

Автор прочитал и одобрил окончательный вариант рукописи.

Информация о рецензировании:

"Качественная Клиническая Практика" благодарит анонимного рецензента (рецензентов) за их вклад в рецензирование этой работы.

Комментарий редакции:

В случае возникновения разночтений в тексте или расхождений в форматировании между pdf-версией статьи и её html-версией приоритет отдаётся pdf-версии.

Для цитирования:

Сычёв Д.А. Рекомендации по применению фармакогенетического тестирования в клинической практике. Качественная Клиническая Практика. 2011;(1):3-10.

Введение

Клиническая фармакогенетика – это раздел клинической фармакологии и клинической генетики, изучающий место и роль генетических факторов в формировании ответа организма человека на лекарственные средства (ЛС): эффективность, не эффективность, развитие неблагоприятных побочных реакций (НЛР) [1]. Закономерности, выявляемые фармакогенетикой, позволяют врачу индивидуально подходить к выбору как самих ЛС, так и их доз у каждого конкретного пациента, обеспечивая максимально эффективную и безопасную фармакотерапию [2].

Предметом изучения клинической фармакогенетики выступают особенности генетического аппарата, которые ассоциированы с изменениями фармакологического ответа (генетически детерминированный фармакологический ответ) у пациента. Клиническая фармакогенетика является смежной дисциплиной на стыке клинической фармакологии и клинической генетики [3, 4]. Хотя роль наследственности в формировании индивидуального ответа на ЛС известна давно, понимание механизмов, связывающих генетические особенности пациента с изменением эффективности и безопасности фармакотерапии, стало возможным лишь к настоящему времени, в связи с развитием соответствующих методов молекулярной биологии и реализацией международной программы «Геном человека» [5].

Эти генетические факторы (а по сути, генетические особенности пациента), как правило, представляют собой полиморфные участки генов, продукты которых, так или иначе, участвуют в осуществлении различных фармакокинетических и фармакодинамических процессов [4, 6].

К первой группе относятся гены, кодирующие ферменты биотрансформации и транспортеры, которые осуществляют всасывание, распределение и выведение ЛС из организма. В настоящее время, активно изучается роль генов, контролирующих синтез и работу ферментов биотрансформации лекарственных средств, в частности изоферментов цитохрома Р-450 (CYP2D6, CYP2C9, CYP2C19 и т.д.), ферментов II фазы биотрансформации (N-ацетилтрансферазы, глутатион-S-трансферазы) и транспортеров ЛС (Р-гликопротеин, транспортеры органических анионов и катионов) [4].

Во вторую группу входят гены, кодирующие «молекулы-мишени» ЛС или функционально связанные с данными структурами белки (рецепторы, ферменты, ионные каналы). Также сюда включены гены, продукты которых участвуют в различных патологических процессах (факторы свертывания крови, аполипопротеины, гены системы HLA и т.д.), «против» которых направлена соответствующая фармакотерапия [4].

Выше описанные генетические особенности пациентов, ассоциированные с изменениями фармакологического ответа, выявляются при проведении фармакогенетического тестирования [2].

Фармакогенетический тест – это выявление конкретных генотипов, ассоциированных с изменением фармакологического ответа. В основе таких тестов лежит полимеразная цепная реакция (ПЦР). При этом в качестве источника ДНК для ПЦР (т.е. генетического материала) используются чаще всего кровь больного или соскоб буккального эпителия [2]. Сбор этого биологического материала у больного не требует предварительной подготовки. Результаты фармакогенетического теста представляют собой идентифицированные генотипы больного по тому или иному полиморфному маркеру. Как правило, врач-клинический фармаколог интерпретирует результаты фармакогенетического теста – формулирует рекомендации по выбору ЛС и его режима дозирования для конкретного пациента. Применение таких тестов позволяет заранее прогнозировать фармакологический ответ на ЛС и персонализировано подойти к выбору ЛС и его режима дозирования, а иногда и тактику ведения пациентов. Предполагается, что внедрение новых технологий тестирования, основанных на «микрочипах» (microarray-technology, ДНК-чипы), позволит определять не отдельные полиморфизмы конкретных генов, а проводить тотальный скрининг сразу всех (или почти всех) аллельных вариантов в геноме человека, ассоциированных с изменением фармакологического ответа на то или иное ЛС, что, собственно, и является задачей фармакогеномики. При этом, в будущем, станет возможным составление т.н. генетического паспорта пациента. С этих позиций фармакогеномика, рассматриваются как перспективные направления персонализированной медицины будущего [7].

Условия для проведения фармакогенетического тестирования в клинической практике

Отбор пациентов для проведения фармакогенетического тестирования. Фармакогенетическое тестирование особенно показано [2, 4]:

  • Пациентам с высоким риском развития НЛР;
  • Пациентам с наследственным анамнезом по НЛР.

Требования к ЛС для персонализации, применения которого планируется использование фармакогенетического теста [2, 4]:

  • ЛС не имеет альтернатив в той или иной клинической ситуации:
  • ЛС с большим спектром и выраженностью нежелательных лекарственных реакций (НЛР);
  • ЛС должно применяться длительно / пожизненно;
  • ЛС имеет узкий терапевтический диапазон
  • ЛС эффективно у ограниченного числа пациентов, что особенно актуально для дорогостоящих ЛС.

Требования к фармакогенетическому тесту для использования в клинической практике [2, 4]:

  • наличие выраженной ассоциации выявляемого аллельного варианта того или иного гена с изменением фармакологического ответа (развитием НЛР, недостаточной эффективностью или высокой эффективностью);
  • фармакогенетический тест должен с высокой чувствительностью и специфичностью прогнозировать фармакологический ответ (развитие НЛР, недостаточная эффективность или высокая эффективность);
  • должен быть разработан алгоритм применения ЛС, в зависимости от результатов фармакогенетического тестирования (выбор ЛС, его режима дозирования);
  • выявляемый аллельный вариант должен встречаться в популяции с частотой не менее 1%;
  • должны быть доказаны преимущества (в т.ч. и экономические) применения ЛС с использованием результатов фармакогенетического теста, по сравнению с традиционным подходом (повышение эффективности, безопасности фармакотерапии и экономическая рентабельность подобного подхода);
  • фармакогенетический тест должен быть доступен для врачей и пациентов.

В настоящее время, этим требованиям частично или полностью удовлетворяет ограниченное число фармакогенетических тестов. Ниже приводятся рекомендации по применению в клинической практике фармакогенетических тестов:

  • применение которых регламентировано инструкциями по медицинскому применению ЛС, одобренными FDA, EMA, Министерством здравоохранения и социального развития РФ [8];
  • применение которых рекомендуется экспертами Европейского научного фонда и одобрено участниками Конференции по фармакогенетике и фармакогеномике в Барселоне в июне 2010 года (опубликованы в марте 2011 года) [9].

Варфарин

Показания для применения фармакогенетического теста:

  • Выбор начальной дозы варфарина у пациентов с тромбозами (ТЭЛА, тромбозы глубоких вен и другие венозные тромбозы, артериальные тромбоэмболии, включая эмболический инсульт) и у пациентов с высоким риском тромботических осложнений (постоянная форма фибрилляции предсердий, протезированные клапаны, послеоперационный период, в т.ч. в ортопедической практике).

Аллельные варианты (полиморфизмы), которые необходимо определять.

  • CYP2C9*2 (rs1799853) и CYP2C9*3 (rs1057910)- аллельные варианты (полиморфные маркеры) гена CYP2C9 (кодирует основной фермент биотрансформации варфарина).
  • Полиморфный маркер G3673A (rs9923321) гена VKORC1 (кодирует молекулу-мишень для варфарина- субъединицу 1 витамин К экпоксидредуктазного комплекса).

Частота выявляемых аллельных вариантов (полиморфизмов) в российской популяции. Частота генотипов по CYP2C9, соответствующих медленным метаболизаторам (носительство аллельных вариантов CYP2C9*2 и CYP2C9*3), в российской популяции составляет от 20-35%, что сопоставимо с европейскими этническими группами [10]. Частота генотипа АА по полиморфному маркеру G1639A гена VKORC1 в российской популяции составляет 13%, что сопоставимо с европейскими этническими группами [11].

Ассоциации между выявляемыми аллельными вариантами (полиморфизмами) генов с изменениями фармакологического ответа. Однозначно доказано, в т.ч. и в отечественных исследованиях, что носительство аллельных вариантов CYP2C9*2 и CYP2C9*3 и генотип АА по полиморфному маркеру G1639A ассоциируются с низкими подобранными дозами варфарина, нестабильность антикоагулянтного эффекта, более частыми кровотечениями при его применении 11. Фармакогенетическое тестирование заключается в определении у пациента генотипов по CYP2C9 и VKORC1.

Глава 7 фармакогенетика предмет и задачи фармакогенетики

Повседневная практика показывает, что эффективность и переносимость одних и тех же лекарственных средств у различных больных неодинаковы. Относительно недавно было установлено, что во многом эти отличия определяются генетическими факторами, детерминирующими процессы метаболизма, рецепции, иммунного ответа и т.д.

Изучение генетических основ чувствительности организма человека к лекарственным средствам составляет предмет фармакогенетики. Термин “фармакогенетика” предложил Фогель в 1959 г.

Задачей клинической фармакогенетики является также разработка методов диагностики, профилактики и коррекции необычного ответа организма на действие лекарственных средств.

Наследственные факторы, определяющие необычные реакции на лекарственные средства, в основном являются биохимическими. Чаще всего это недостаточность ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции на лекарственные вещества могут наблюдаться также при наследственных нарушениях обмена веществ.

Биотрансформация лекарственных средств в организме человека происходит под влиянием определенных ферментов, которые представляют собой специфические белки. Ферменты посредством активных центров связываются с лекарственными веществами и ускоряют процессы их химического превращения. Биотрансформация лекарственного вещества может осуществляться не одним ферментом, а целой группой, особенно в тех случаях, когда химическое превращение вещества в организме проходит в несколько этапов. Для каждого фермента характерна высокая специфичность. Он катализирует лишь строго определенное звено химического процесса. При метаболизме многих лекарственных веществ образуются продукты с одними и теми же функциональными группами (ОН, — Н2, — СООН, — Н), поэтому дальнейшее их превращение обеспечивается одними и теми же ферментами. Таким образом, один фермент может принимать участие в метаболизме различных лекарственных средств.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов — ферментопатии. В зависимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Наследственные дефекты ферментных систем

Атипичная псевдохолинэстераза. Содержащийся в сыворотке крови и различных тканях фермент псевдохолинэстераза представляет собой гликопротеид с молекулярной массой около 300 000. Этот фермент обеспечивает гидролиз эфиров холина и различных алифатических и ароматических кислот. Интерес к псевдохолинэстеразе повысился после внедрения в медицинскую практику деполяризующего миорелаксанта сукцинилхолина (дитилин, листенон, миорелаксин). У большинства людей после внутривенного введения раствора этого препарата наступает расслабление скелетных мышц, что приводит к остановке дыхания. Эта реакция продолжается в течение 2-3 мин. Небольшая продолжительность действия сукцинилхолина обусловлена тем, что под влиянием псевдохолинэстеразы он быстро гидролизуется и инактивируется. Однако у некоторых людей паралич мускулатуры и остановка дыхания длятся 2-3 ч и более в результате резкого снижения активности сывороточной псевдохолинэстеразы, которое вначале объясняли нарушением функции печени, где фермент синтезируется. Позднее было установлено, что снижение активности фермента обусловлено изменениями его аминокислотного состава. При обследовании родственников больных с атипичной псевдохолинэстеразой было установлено, что у многих из них также снижена активность этого фермента и соответственно повышена чувствительность к сукцинилхолину. Таким образом был доказан наследственный характер данной патологии. Считается, что синтез белковой части молекулы псевдохолинэстеразы обеспечивается рядом аллелей структурных генов. Мутация одного или нескольких из них приводит к образованию атипичных молекул фермента, отличающихся от нормального аминокислотным составом. Дефект наследуется по рецессивному типу. Отличить нормальный фермент от атипичного можно с помощью ингибиторов псевдохолинэстеразы — дибукаина (совкаина) и фторида натрия.

В большинстве популяций, в частности европейской, количество людей, гетерозиготных по мутантному аллелю, не превышает 2-4%. Частота клинически значимого гомозиготного носительства мутантных генов в этих популяциях составляет 1:2000-1:3000. Однако существуют популяции, в которых частота гетерозиготного носительства мутантного аллеля значительно выше. Таковы, например, популяции чехов и словаков (7%), евреев Ирана и Ирака (10%). Частота гомозиготного носительства в них достигает 1:400. В Южной Индии число людей с полным или почти полным отсутствием активности псевдохолинэстеразы составляет 2,5%.

При возникновении длительного апноэ при применении сукцинилхолина необходимо внутривенно ввести свежую донорскую кровь с нормальной активностью псевдохолинэстеразы. При этом сукцинилхолин быстро гидролизуется и его действие прекращается. К такому же результату приводит внутривенное введение растворов псевдохолинэстеразы, выделенной из донорской крови.

Недостаточность глюкозо-6-фосфатдегидрогеназы.К числу распространенных наследственных дефектов относится недостаточность глюкозо-6-фосфатдегидрогеназы (Г-6-ФДГ). Носителями такого дефекта являются по крайней мере 200 млн человек.

Г-6-ФДГ играет важную роль в обмене углеводов, в том числе в эритроцитах, где она катализирует окисление глюкозо-6-фосфата в 6-фосфоглюконат. В этой реакции образуется восстановленный никотинамидадениндинуклеотидфосфат (НАДФ.Н2), который в дальнейшем используется для восстановления глутатиона (при участии глутатионредуктазы), а также частично метгемоглобина в гемоглобин. Восстановленный глутатион защищает гемоглобин и тиоловые ферменты, поддерживающие нормальную проницаемость мембран эритроцитов, от окислительного действия различных веществ, в том числе и лекарственных препаратов.

При недостаточности Г-6-ФДГ прием некоторых лекарственных средств ведет к массивному разрушению эритроцитов (гемолитические кризы) вследствие падения содержания в них восстановленного глутатиона и дестабилизации мембран (активность глутатионредуктазы остается нормальной).

Острый гемолиз эритроцитов впервые наблюдали у американских негров при приеме противомалярийного препарата Примахина. Гемолитический криз развивался у 10% пациентов. Последующие биохимические и генетические исследования показали, что у таких больных активность Г-6-ФДГ не превышает 15%, а контроль за синтезом Г-6-ФДГ на рибосомах клеток осуществляется генным аппаратом Х-хромосомы. Известно несколько нормальных вариантов этого фермента и около 150 атипичных.

Гемолитические кризы у таких людей вызывают не только лекарственные средства, но и конские бобы. По их латинскому названию Vicia fava заболевание было названо “фавизмом”. Токсическими веществами конских бобов являются продукты гидролиза B-гликозидов (вицин и конвицин), которые обладают сильным окислительным действием, в 10-20 раз превосходящим таковое аскорбиновой кислоты. Как правило, болезнь начинается внезапно: появляется озноб и резкая слабость, снижается число эритроцитов, а затем развивается коллапс. Реже первыми симптомами оказываются головная боль, сонливость, рвота, желтуха, которые связаны с гемолизом. Иногда фавизмом страдают даже грудные дети, матери которых употребляли в пищу конские бобы. Желтуху при недостаточности Г-6-ФДГ объясняют нарушением глюконизирующей активности печени.

Некоторые препараты оказывают гемолитическое действие у людей с недостаточностью Г-6-ФДГ только при определенных условиях. Предрасполагающими факторами являются инфекции, недостаточность функций печени и почек, диабетический ацидоз и т.д.

Количество людей, у которых соответствующие препараты вызывают гемолиз, варьирует в популяции от 0 до 15%, а в некоторых местностях достигает 30%.

Недостаточность Г-6-ФДГ и фавизм распространены в Азербайджане. В 60-х годах в республике было запрещено выращивание конских бобов, что привело к значительному снижению частоты заболевания.

Людей с недостаточностью Г-6-ФДГ следует предупреждать об опасности применения соответствующих препаратов, а также необходимости исключения из пищевого рациона конских бобов, крыжовника, красной смородины. Больные с дефицитом Г-6-ФДГ должны помнить о том, что их дети также могут страдать аналогичным заболеванием.

Недостаточность ацетилтрансферазы.Вскоре после внедрения в медицинскую практику гидразида изоникотиновой кислоты (изониазид, тубазид) было обнаружено, что переносимость этого препарата больными неодинакова. Одни больные переносят препарат хорошо, в то время как у других возникают тяжелые побочные реакции — головная боль, головокружение, тошнота, рвота, боли за грудиной, раздражительность, бессонница, тахикардия, полиневрит и т.д. В основе индивидуальной чувствительности организма к изониазиду лежит неодинаковая интенсивность его метаболизма. Основным путем биотрансформации этого препарата является ацетилирование. Незначительная часть его гидролизуется, а также выводится с мочой в неизмененном виде. Ацетилирование изониазида осуществляется при участии N-ацетилтрансферазы — фермента, содержащегося в печени человека. Активность этого фермента генетически обусловлена и у разных людей неодинакова. Было обнаружено, что после однократного приема изониазида у одних больных выделяется с мочой 6-7% введенного препарата в метаболизированной форме, у других — вдвое больше. У медленных инактиваторов концентрация изониазида в крови всегда значительно выше, чем у быстрых. Для определения скорости инактивации изониазида измеряют концентрацию его в плазме крови спустя 6 ч после однократного приема препарата внутрь в дозе 10 мкг/кг. Если содержание изониазида составляет в среднем около 1 мкг/мл, больного относят к быстрым инактиваторам, если около 5 мкг/мл — к медленным.

Процентное соотношение между медленными и быстрыми инактиваторами изониазида среди населения колеблется в больших пределах. Так, медленными инактиваторами являются только 5% эскимосов и 45% американцев. Число быстрых инактиваторов в Западной Европе и Индии достигает 50%, а в Японии — 90-95%.

Различия в скорости метаболизма изониазида мало влияют на результаты лечения туберкулеза, но они в значительной мере сказываются на частоте побочных реакций препарата. У медленных инактиваторов побочные эффекты возникают гораздо чаще.

При назначении изониазида больным туберкулезом необходимо учитывать скорость его метаболизма. При прочих равных условиях у быстрых инактиваторов изониазид применяют в больших дозах, чем у медленных инактиваторов. У последних препарат целесообразно сочетать с пиридоксином (витамином В6), который предупреждает развитие полиневрита и некоторых других побочных реакций.

Скорость ацетилирования может быть различной не только для изониазида, но и сульфадимезина, гидралазина, празозина.

Недостаточность каталазы.Каталаза разрушает перекиси, образующиеся в организме, а также участвует в метаболизме этилового и метилового спирта. В результате реакции образуется огромное количество мелких пузырьков молекулярного кислорода. На этом основано применение растворов перекиси водорода в медицинской практике для обработки ран, язв, и т.п. При нормальной активности каталазы образующиеся в организме или экзогенные перекиси не успевают окислять эндогенные вещества, в том числе гемоглобин.

Полное отсутствие каталазы в крови и тканях человека впервые обнаружили японские исследователи. После операции по поводу гангренозной гранулемы синуса носа у 11-летней девочки обработка раны раствором перекиси водорода не сопровождалась образованием пузырьков кислорода, а цвет крови становился коричнево-черным. При биохимическом анализе было установлено отсутствие каталазы не только в крови, но и в тканях этой больной. Заболевание было названо акаталазией.

Акаталазия передается по аутосомно-рецессивному типу. К 1978 г. в мире было описано более 100 таких больных. У половины из них наблюдалась гангрена ротовой полости и носоглотки, у остальных заболевание протекало бессимптомно. Акаталазия обычно проявляется в подростковом возрасте рецидивирующими изъязвлениями десен. В более тяжелых случаях возникает альвеолярная гангрена, атрофия десен, выпадение зубов. Злокачественная форма характеризуется распространением гангрены на мягкие ткани и кости челюстей. Выраженных изменений в эритроцитах не происходит, так как дефицит каталазы компенсируется другими ферментами.

Диагностика акаталазии основывается на данных анамнеза и результатах соответствующих лабораторных исследований. Необходимо учитывать наличие в прошлом частых воспалительных процессов в полости рта, заболеваний зубов, десен, а также наличие язв, эрозий, альвеолярной гангрены.

Люди с гипокаталазией и особенно с акаталазией обладают высокой чувствительностью к спиртным напиткам из-за уменьшения скорости окисления этилового спирта. При акаталазии последствия отравления метанолом (древесным спиртом) менее выражены, так как у них метанол окисляется менее интенсивно, а содержание формальдегида — промежуточного продукта окисления этого спирта — не достигает высокого уровня.

Специфического лечения акаталазии не существует. При наличии воспалительных очагов используют антибиотики, сульфаниламиды, антисептические средства и т.д.

Молодая наука фармакогенетика

Усвоение лекарственных средств происходит у всех людей по-разному. Одни быстро реагируют на препараты, другим же нужно куда больше времени, чтобы полностью элиминировать лекарство. Причина отличий в активности ферментов кроется в генетических факторах.

Вследствие индивидуальных особенностей пациентов, некоторым из них требуется употреблять более высокие дозы препаратов или необходимо увеличивать кратность приемов. В это же время людям, медленно усваивающим лекарственные средства, показано уменьшение их однократной дозы. Чтобы разобраться с корреляцией персональных генетических особенностей человека и его метаболизмом препаратов, была изобретена наука фармакогенетика.

Фармакогенетика: определение, задачи

Клиническая фармакогенетика изучает механизмы того, как персональная наследственная изменчивость влияет на фармакологический ответ, ведь лекарства, которые для одного пациента безопасны и действенны, могут негативно отразиться на здоровье другого больного.

Данная наука пытается ответить на следующие вопросы:


Появилось свободное время?

Тогда используй его! Получи дополнительное образование!

  • Почему развиваются негативные побочные реакции?
  • Почему наблюдается невосприимчивость к некоторым лекарственным средствам?
  • Как генетическая уникальность определяет индивидуальную реакцию на те или иные препараты?

Фармакогенетические различия выражаются в разной активности ферментов, отвечающих за метаболизм ЛС. Однако на переносимость терапии отказывают влияние не только генетические особенности человека, но и экологические, психологические и иные факторы, например:

  • Пол, возраст;
  • Стресс, вредные привычки, перманентное утомление;
  • Температура воздуха, наличие/отсутствие солнечного света, атмосферное давление, циркадные ритмы;
  • Сбалансированность питания, периоды беременности и лактации.

Естественно, усвояемость препаратов определяется также состоянием внутренних органов и интенсивностью регулярных физических нагрузок.

Клиническая фармакогенетика

Молодая наука фармакогенетика - картинка

Клиническая фармакогенетика: исторический очерк

История науки неразрывно связана с активным изучением генетики, молекулярной фармакологии и медикаментозной терапии. Термин «генетика» был введен в 1902 году британским ученым Бейтсоном. Что касается фармакогенетики (фармакогеномики), то самостоятельной дисциплиной она стала в середине прошлого века, когда начались масштабные исследования влияния определенных генов на метаболизм конкретных ЛС.

В 60-ых годах ХХ века фармакогенетикой заинтересовались ученые из СССР. В 1973 году была создана первая в советской стране лаборатория фармакологической генетики, где исследовались психотропные вещества. Кроме того, в научном центре изучался мутагенез – процесс возникновения в организме наследственных или приобретенных под влиянием внешних факторов изменений.

С того момента глубокая проработка фармакогенетических особенностей не останавливается в России ни на минуту, а интерес к теме возрастает с каждым днем.

Фармакодинамика и полиморфизм генов

Существование однонуклеотидных полиморфизмов в гене может обуславливать генетические особенности человека, определяющие фармакологический ответ. Полиморфы представляют собой вставки, замены, делеции, которые влияют на количество и активность белка. Это одна из причин, почему одни и те же лекарственные препараты воспринимаются по-разному: некоторым людям достаточно однократного приема для действенной терапии, другим же приходится удваивать или даже утраивать дозировку.

Фармакогенетика – комплексная наука, затрагивающая почти каждого человека. Изучить подробнее последние исследования в данной сфере и познакомиться с побочными реакциями лекарственных препаратов можно на семинаре «Эпигенетика.Питание и гены. Персонализированная медицина», в результате которого все слушатели получат новые знания в актуальной сфере, сертификат участника и удостоверение о повышении квалификации (установленного образца).

Кроме аспектов современной фармакогенетики, лектор мероприятия - молекулярный диетолог и врач-эндокринолог Братчикова Алина Андреевна - расскажет об основах эпигенетики, нутригеномике, биочиповых технологиях в фармакологической генетике и многих других темах, так или иначе связанных с генетическими особенностями людей.

Программа состоит из двух частей и предполагает как онлайн-участие, так и очное присутствие.

Запись на семинар «Эпигенетика.Питание и гены. Персонализированная медицина», который состоится 5 апреля 2020 года, уже открыта.

Фармакогенетика

раздел медицинской генетики и фармакологии, изучающий зависимость реакций организма на лекарственные средства от наследственных факторов. Основной задачей Ф. является изучение этих реакций, разработка методов их диагностики, коррекции и профилактики.

Установлено, что причинами атипичных реакций организма на лекарственные средства обычно являются наследственные изменения ферментных систем, т.е. генетически обусловленные энзимопатии, а также некоторые наследственные болезни обмена веществ и иногда передающиеся по наследству пороки развития отдельных органов.

К наиболее распространенным фармакогенетическим реакциям на лекарственные средства относят Гемолиз у лиц с врожденной недостаточностью глюкозо-6-фосфат-дегидрогеназы (Г-6-ФД) эритроцитов, синтез которой контролируется х-хромосомой. Способностью вызывать гемолиз при недостаточности Г-6-ФД обладают многие лекарственные препараты и промышленные вещества, проявляющие свойства окислителей, например производные нитрофурана (фурадонин, фуразолидон и др.), сульфаниламиды (стрептоцид, сульфапиридазин и др.), диафенилсульфон и прочие сульфоны, а также хинин, хинидин, примахин, толуидиновый синий, тринитротолуол и т.д. Имеются также потенциальные гемолитические вещества (фенацетин, ацетилсалициловая кислота, левомицетин, нитриты, метиленовый синий, аскорбиновая кислота, хингамин, акрихин и др.), которые вызывают гемолиз при определенных сопутствующих факторах, например при инфекционных заболеваниях. Возникновению гемолитических кризов в ответ на некоторые даже малоопасные в этом отношении вещества может способствовать их накопление в крови в высоких концентрациях, например при поражениях печени и почек, сопровождающихся снижением их функции. Чувствительность эритроцитов к действию веществ повышается при диабетическом ацидозе и других нарушениях электролитного баланса. Степень гемолиза обычно зависит от дозы. Гемолитическое действие веществ может проявиться не только при приеме их внутрь, но и при попадании на кожу или вдыхании паров (например, паров нафталина).

Резкое увеличение продолжительности миопаралитического эффекта дитилина наблюдается у лиц с недостаточностью сывороточной псевдохолинэстеразы, наследующейся по аутосомно-рецессивному принципу. Для прекращения действия дитилина в этих случаях (как и при его передозировке) прибегают к переливанию свежей донорской крови или внутривенному введению очищенных препаратов псевдохолинэстеразы.

Неодинаковая переносимость противотуберкулезного препарата изониазида также обусловлена фармакогенетическими причинами. Установлено, что индивидуальная чувствительность организма к нему связана с различиями в его метаболизме в печени под влиянием фермента М-ацетилтрансферазы. Наследование активности и содержания этого фермента носит аутосомно-рецессивный характер. У больных с низкой активностью данного фермента ацетилирование изониазида происходит медленно, в связи с чем в этих случаях чаще и в более выраженной степени проявляются признаки его побочного действия (головокружение, головная боль, тошнота, рвота, раздражительность, бессонница, снижение аппетита, тахикардия, боли за грудиной, периферические невриты и др.). Полиморфизм реакции ацетилирования в организме характерен не только для изониазида, но и для ряда других лекарственных средств, например апрессина, сульфадимезина и диафенилсульфона.

Имеются сведения о генетических различиях в процессах окислительного метаболизма ряда лекарственных средств, что, очевидно, связано с наследственной неоднородностью зависимых от цитохрома Р-450 оксидаз. По этой причине основные параметры фармакокинетики антипирина, бутадиона, сибазона, феназепама, дифенина, индометацина, карбамазепина, нортриптилина, пармидина, бутамида и некоторых других препаратов, метаболизирующихся под влиянием этой ферментной системы, могут иметь выраженные индивидуальные колебания.

К наследственно обусловленным реакциям на лекарства относятся также необычные изменения внутриглазного давления в ответ на введение глюкокортикоидов, повышенная токсичность меркаптопурина и азатиоприна у лиц с врожденной недостаточностью тиопуринметилтрансферазы в эритроцитах, изменения эффектов перекиси водорода при акаталазии и гипокаталазии, возникновение цианоза после приема фенацетина или сульфаниламидов при наследственной метгемоглобинемии, гипертермию, возникающую при применении дитилина и некоторых средств для наркоза (фторотана, метоксифлурана), и др.

Важной задачей Ф. является исследование влияния лекарственных средств на генетически обусловленное патологическое состояния организма. Например, наследственные нарушения пуринового обмена при подагре могут усиливаться под влиянием лекарственных средств, стимулирующих образование мочевой кислоты (меркаптопурина, азатиоприна и др.) или нарушающих ее выделение из организма (дихлотиазида и др.). При наследственной порфирии признаки ее обострения (приступы кишечной колики, полиневриты, параличи мышц, психические нарушения, судороги и т.п.) вызывают барбитураты, амидопирин, гризеофульвин, сульфаниламиды, эстрогены и содержащие их пероральные противозачаточные средства, некоторые транквилизаторы и противоэпилептические средства, которые стимулируют активность синтетазы β-аминолевулиновой кислоты. Повышению уровня билирубина в крови при синдромах Жильбера и Дубина — Джонсона способствуют эстрогены и содержащие их пероральные противозачаточные средства.

Наследственные заболевания системы крови (гемофилия А, болезнь Виллебранда) являются противопоказанием к применению лекарственных средств (антиагрегантов, антикоагулянтов), нарушающих процесс тромбообразования и усиливающих вследствие этого кровоточивость тканей при указанных заболеваниях.

Библиогр.: Лильин Е.Т., Трубников В.И. и Ванюков М.М. Введение в современную фармакогенетику, М., 1984; Соради И. Основы и педиатрические аспекты фармакогенетики, пер. с венгер., Будапешт, 1984.

раздел медицинской генетики, изучающий генетические основы реакций организма на лекарственные вещества.

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг .

Клиническая фармакогенетика Выполнила: Омарова Алтынай 616-1 Факультет Терапия. - презентация

Презентация на тему: " Клиническая фармакогенетика Выполнила: Омарова Алтынай 616-1 Факультет Терапия." — Транскрипт:

1 Клиническая фармакогенетика Выполнила: Омарова Алтынай Факультет Терапия

2 Фармакогенетика - наука, изучающая роль генетических факторов в формировании фармакологического ответа организма человека на ЛС. Фармакогенетика возникла на стыке фармакологии и генетики. Хотя роль наследственности в формировании индивидуального ответа на ЛС была известна давно, понимание механизмов влияния генетических факторов на эффективность и безопасность фармакотерапии стало возможным лишь в связи с развитием методов молекулярной биологии и реализацией международной программы «Геном человека». Фармакокинетические и фармакодинамические процессы, протекающие с участием различных белков организма человека (ферментов, ионных каналов, молекул-переносчиков, рецепторов и т.д.), находятся под генетическим контролем.

3 Основные задачи клинической фармакогенетики: определение роли наследственных факторов в формировании реакций организма на вводимые лекарства, в том числе неблагоприятных реакций, нередко ведущих к тяжелым последствиям; разработка эффективных мер их профилактики и лечения; изыскание новых путей повышения эффективности фармакотерапии различных заболеваний, в том числе наследственных; изучение сущности уже известных и вновь обнаруживаемых энзимопатий, при которых резко нарушается действие лекарственных средств; разработка доступных методов выявления лиц носителей атипичных ферментов, которые прямо или косвенно влияют ни фармакокинетику и фармакодинамику лекарств.

4 Важной проблемой клинической фармакогенетики является индивидуальная чувствительность людей к лекарственным средствам в зависимости от генотипа. Известно, что больные в разной степени реагируют на лекарственные препараты. Специальные исследования показали, что индивидуальная чувствительность ко многим лекарствам колеблется.

5 Фармакогенетика Изучает причины врожденных (генетических) различий индивидуальных реакций на лекарственные препараты. Роль генетических факторов в индивидуальной реакции организма человека на лекарственные препараты и неблагоприятные экологические воздействия впервые показана в 1958 (Фридрих Фогель, Германия, Арно Мотульски, США). Если клиническая фармакология изучает патологические реакции на лекарства (фактология, биохимия), то фармакогенетика – их генетические механизмы (природу наследственной обусловленности реакции).

6 Фармакогенетические тесты, рекомендованные к применению в клинической практике в различных странах для снижения риска развития НПР оральных антикоагулянтов: варфарина, аценокумарола (определение полиморфизмов генов CYP2C9 и VKORC1) антидепрессанты и нейролептики (определение полиморфизмов гена CYP2D6) изониазид, пиразинамид, рифампицин (определение полиморфизмов гена NAT2) оральные контрацептивы (определение т.н. «мутации Лейдена» в гене V фактора свертывания) атомоксетин (определение полиморфизмов гена CYP2D6) ориконазол (определение полиморфизмов гена CYP2C19) карбамазепин (определение полиморфного маркера HLA- B*1502) абакавир (определение полиморфного маркера HLA-B*5701) азатиаприн, 6-меркаптопурин (определение полиморфизмов гена ТРМТ) иринотекан (определение полиморфизма гена UGT1A1)

7 Требования к фармакогенетическому тесту для внедрения в клиническую практику. Наличие выраженной ассоциации между выявляемым аллелем того или иного гена и неблагоприятным фармакологическим ответом (развитие НЛР или недостаточная эффективность). Фармакогенетический тест должен обладать высокой чувствительностью, специфичностью, предсказательной ценностью положительного (PPV) и отрицательного (NPV) результатов. Должен быть хорошо разработан алгоритм применения ЛС в зависимости от результатов фармакокинетического теста: выбор ЛС, его режима дозирования, «агрессивная» тактика ведения пациента и т.д. Выявляемый (как правило минорный) аллель должен встречаться в популяции с частотой не менее 1%. Должны быть доказаны преимущества применения ЛС с использованием результатов фармакокинетического теста по сравнению с традиционным подходом: повышение эффективности, безопасности фармакотерапии. Тест должен быть оценен с позиции фармакоэкономики Felix W. Frueh, 2006 (в модификации)

8 Оборудование для проведения генотипирования. Стоимость «минимального комплекта» (50 ФГ тестов в неделю) евро. Вытяжной шкаф Амплификатор Вортекс Центрифуга Электрофоретическая камера Трансиллюминатор Система документирования геля

9 Этапы фармакоге- нетического теста

10 Заключение Очень важно вооружить врачей знаниями в области фармакогенетики и навыками практического использования фармакокинетического тестирования, для чего необходимо наладить обучение персонала фармакогенетических лабораторий. Клиническая фармакогенетика активно развиваются и уже вплотную подошли к внедрению в реальную клиническую практику. Фармакогенетическое тестирование вполне может явиться высокой медицинской технологией в области фармакотерапии.

11 Литература Сычев Д. А., Раменская Г. В., Игнатьев И. В., Кукес В. Г. Клиническая фармакогенетика: Учебное пособие/ Под ред. академика РАМН В. Г. Кукеса и академика С. Б. Лекции РАМН Н. П. Бочкова.- М.: ГЭОТАР-Медиа, с.: ил. Середенин по фармакогенетике. М.: МИА, с. Соради И. Основы и педиатрические аспекты фармакогенетики. Будапешт: Издательство Академии наук Венгрии, с. Лильин Е. Т. Введение в современную фармакогенетику. -М.: Медицина с.

Читайте также: