Физиология регуляции положения головы

Обновлено: 31.05.2024

Сохранение баланса – сложная биохимическая реакция, она включает в себя несколько нервных и постоянных сенсорных афферентных реакций, образуя обратную связь от периферических рецепторов организма.

К механизмам поддержания равновесия у человека относятся: вестибулярная, зрительная и сенсорная системы. Вся информация интегрируется в центральной нервной системе (ЦНС). Первостепенная роль отводится вестибулярным рецепторам, они определяют силы гравитации, переводят информацию в импульсы, которые расшифровываются мозгом. В результате этого человек осознает положение головы и тела в пространстве, ему доступна информация, которая управляет позными движениями. Деятельность вестибулярных ядер (верхнего, латерального, медиального и нижнего) модулируется и интегрируется множеством афферентных входов.

Вестибулярные ядра связаны с пятью физиологическими системами:

  • глазодвигательными ядрами через продольный медиальный пучок;
  • ретикулярной формацией через мультисинаптические связи;
  • моторной частью спинного мозга через ретикулоспинальные пути и частично медиальный продольный пучок;
  • мозжечком;
  • вегетативной нервной системой.

Вестибулярная, зрительная и сенсорная системы ответственны за сохранение равновесия. Они считаются триадой постурального контроля, так как каждая система должна быть интегрирована для определения центра тяжести тела.

Соматосенсорная система

Соматосенсорная система получает информацию о взаимном расположении частей тела в статической позиции (так называемая проприоцепция) и в динамических позиций (так называемый кинестезия). Система получает эту информацию от периферических источников, мышц, суставных капсулл и мягких тканей рецепторов (мышечных веретен, окончаний Руффини). Эта система играет важную роль в регуляции позы. Информация должна быть обнаружена периферически и передается централизованно для обработки.

Визуальная или зрительная система

Зрительная система получает информацию о положении тела и движения в пространстве, в частности, положение головы по отношению к окружающей среде. Это способствует изменению положения головы, шеи и всего тела. Зрительный анализатор также обрабатывает информацию относительно движения окружающих предметов, содержащая информацию о скорости движения (т.е. глядя из поезда, вы видите, что вы движетесь).

Вестибулярная система

Вестибулярная система обрабатывает информацию, касающуюся ориентации головы в пространстве и определяет скорость или ускорение. Любое движение головы (в том числе при переносе веса тела для регуляции положения тела) стимулирует вестибулярные рецепторы. Рецепторы раздражаются наклоном или движением головы, при этом возникают рефлекторные сокращения мышц, способствующие выпрямлению тела и сохранению позы.

Если вы хотите узнать больше о деталях работы сенсорных систем, пожалуйста, обратитесь к любому учебнику физиологии.

Постуральный контроль (регуляция положения тела в пространстве) определяется двумя компонентами:

  • постуральная устойчивость - способность поддерживать вертикальное положение тела, что сопряжено со способностью поддержания центра давления тела внутри границ площади опоры;
  • постуральная ориентация - способность поддерживать соответствующую взаимосвязь между отдельными структурами тела, между телом и окружающим пространством.

Постуральную устойчивость (в том числе, и определенную жесткость тела человека в условиях гравитации) обеспечивают постуральные рефлексы, которые бывают двух видов:

  • познотонические рефлексы, которые ограничивают (по мере необходимости) число степеней свободы суставов за счет закрепощения тоническими мышцами. Так, позвоночник оказывается ограничен в подвижности паравертебральными мышцами; определенными мышцами ограничивается подвижность в тазобедренных, коленных и голеностопных суставах и атлантоокципитальном сочленении.
  • установочные рефлексы: без установочных рефлексов закрепощенное тело человека, поставленное вертикально, упало бы. Этого не происходит, потому что при отклонении от вертикали срабатывают рецепторы вестибулярного аппарата и проприоцепторы суставов и мышц.

«Сенсорная информация» от вестибулярного аппарата поступают по нисходящим вестибулоспинальным путям к мышцам туловища и конечностей для восстановления утраченного равновесия; а также эта информация, вместе с информацией от проприоцептивной системы поступает по восходящим вестибулоцеребеллярным и спиноцеребеллярным путям в мозжечок, являющийся центром равновесия.

Оба компонента постурального контроля (постуральная устойчивость и постуральная ориентация) очень тесно взаимосвязаны. Любое изменение постуральной ориентации мгновенно влечет за собой смещение центра тяжести. Вместе с тем, и коррекция положения центра тяжести достигается за счет перемещения структур тела относительно друг друга, то есть за счет изменения позы. Следовательно, отклонение тела человека от вертикали дает важную информацию для восстановления утраченного равновесия (при этом функционирует преимущественно тоническая мускулатура), поэтому равновесие здорового человека можно охарактеризовать как устойчивое неравновесие.

Таким образом, система постурального контроля складывается из двух подсистем. Первой подсистемой является мышечно-скелетная подсистема, которая характеризуется различной степенью выраженности степени свободы движений в суставах, свойствами тонических и фазических мышц, жесткостью, устойчивостью позвоночного столба, а также его эластичностью и гибкостью. Второй подсистемой является невральная подсистема.

Формы постурального контроля:

  • постуральный контроль спокойного стояния
  • реактивный (в ответ на возмущения) или адаптивный контроль
  • преднастройка позы
  • произвольный контроль

Постуральный контрол спокойного стояния (регуляция позы) осуществляется, прежде всего, антигравитационной мускулатурой (мышцами-разгибателями позвоночного столба, тазобедренных и коленных суставов), а также рефлексами на растяжение мышц передней и задней поверхности голени. Кроме этого, проприоцептивные сигналы от поверхностных и глубоких тактильных рецепторов подошвенной поверхности стоп, то есть информация о контакте стопы с опорой. В осуществлении функции равновесия важны: зрительная информация, информация от проприоцепторов сухожилий глазодвигательных мышц. Но наиболее значимыми являются проприоцепция и импульсация от рецепторов вестибулярного аппарата.

Реактивный (или адаптивный) постуральный контроль представляет собой автоматическое изменение позы в ответ на нарушение равновесия. Это происходит при внезапной смене направления движения, при неожиданном столкновении с препятствием. В этот момент центр давления тела смещается к границе площади опоры, что вызывает реальную угрозу падения. Реактивный контроль заключается в восстановлении безопасного положения центра давления за счет изменения позы. Это достигается активацией нервно-мышечных синергий, главным образом, за счет обработки информации о линейных и угловых изменениях положения головы. Другие афферентные системы выполняют в этом случае важную, но вспомогательную роль. Реактивный постуральный контроль имеет более сложную организацию, так как сохранение равновесия в данном случае зависит, прежде всего, от выбора позной стратегии. Структурой, ответственной за выбор адекватных двигательных и позных синергий, являются базальные ганглии, специфической функцией которых является программирование последовательности включения мышечных синергий при внезапной потере равновесия.

Преднастройка (изменение) позы (предшествующая произвольному движению). Очень важная роль в запуске предшествующей движению позной преднастройки принадлежит промежуточным отделам мозжечка. Не исключается и участие моторных зон коры, поскольку в ней формируется окончательная программа произвольного движения. Основным фактором, определяющим включение позной преднастройки, является наличие у человека двигательного опыта или представлений о способе выполнения данного движения. Позная преднастройка является формой опережения, а реактивный позный контроль – форма обратной связи.

Произвольный позный (постуральный) контроль имеет место в усложненных условиях сохранения постурального равновесия, например, при необходимости преодолевать какое-либо препятствие при ограничении сенсорной информации. Это наиболее сложная, сознательно управляемая форма контроля, так как она предполагает наличие смысловой программы действия, формирующейся в ассоциативных зонах мозга, координационно-двигательные аспекты которой программируются при непосредственном участии базальных ганглиев и мозжечка, моторных зон коры головного мозга. Наиболее часто эта форма контроля запускается зрительным сигналом об изменении или усложнении условий для сохранения равновесия.

Физиологические основы поддержания равновесия

Причиной головокружения в большинстве случаев служит нарушение согласованной деятельности различных сенсорных систем – вестибулярной, зрительной, проприоцептивной (информация о положении тела в пространстве, получаемая от рецепторов, расположенных главным образом в мышцах и сухожилиях). Кроме того, важной, а иногда и доминирующей причиной возникновения головокружения является дисфункция центральных структур, участвующих в поддержании равновесия тела, главным образом, ядер мозжечка.

Вестибулярная система

Вестибулярная система состоит из:

  • лабиринта,
  • вестибулярной части преддверно-улиткового нерва,
  • вестибулярных ядер в стволе головного мозга, а также их связей с другими отделами ЦНС (центральной нервной системы).

Правильная работа вестибулярной системы позволяет человеку четко ориентироваться в трехмерном пространстве, а именно:

  • воспринимать положение тела относительно вектора силы тяжести (статический компонент);
  • ощущать направление и скорость движения тела при его угловых и линейных перемещениях (динамический компонент).

Лабиринт располагается в каменистой части височной кости и включает:

  • отолитовый аппарат, который представлен двумя сообщающимися камерами (саккулус и утрикулус);
  • системой трех полукружных каналов, располагающихся во взаимоперпендикулярных плоскостях.

Строение лабиринта

Строение лабиринта

В каждой камере отолитового аппарата и в каждом полукружном канале имеется скопление рецепторных клеток – макула, которая покрыта желатинообразной массой – купулой. В отолитовом аппарате купула покрывает волосковые клетки наподобие подушки и содержит отложения кристаллов кальцита (отолиты), которые придают купуле дополнительный вес.

Отолитовый аппарат

Отолитовый аппарат

В полукружных каналах желатинообразная масса не содержит отолитов и полностью перекрывает просвет канала.

Рецепторы вестибулярной системы представлены волосковыми клетками, которые несут на апикальной поверхности от 60 до 80 тонких выростов цитоплазмы (стереоцилий) и одну ресничку (киноцилию).

Восприятие положения тела относительно силы гравитации

При вертикальном положении головы макула утрикулуса располагается горизонтально. Когда голова наклоняется в сторону, утяжеленная отолитами желатинообразная мембрана под действием силы тяжести соскальзывает в сторону наклона. Это скольжение приводит к изгибанию стереоцилей волосковых клеток. Наклон стереоцилей сопровождается (в зависимости от направления) повышением или снижением частоты нервных импульсов в чувствительных нейронах вестибулярного ганглия. Макула саккулуса располагается вертикально и действует таким же образом.

Восприятие положения тела относительно силы гравитации

Восприятие положения тела относительно силы гравитации

Восприятие линейных ускорений

При резком линейном ускорении тела купула саккулуса или утрикулуса за счет сил инерции смещается в направлении, противоположном направлению движения, что также приводит к изменению электрической активности рецепторов.

Восприятие углового ускорения

Три полукружных канала расположены в трех разных плоскостях. Каждый из трех каналов действует как замкнутая трубка, заполненная лимфой. В расширенной части канала его внутренняя стенка выстлана волосковыми клетками, а расположенная над ними купула полностью перекрывает просвет канала. При повороте головы полукружные каналы поворачиваются вместе с ней, а эндолимфа в силу своей инерции в первый момент остается на месте. В результате этого возникает разность давлений по обе сторону купулы, и она прогибается в направлении, противоположном движению. Это вызывает деформацию стереоцилий и последующее изменение активности нейронов.

Восприятие углового ускорения

Восприятие углового ускорения

При вращении головы только в горизонтальной, сагитальной или фронтальной плоскости активируются рецепторы одного из соответствующих каналов. При сложном вращении головы активируются рецепторы всех трех каналов. Информация от них поступает в головной мозг и на основе ее конвергенции и анализа модулируется истинная картина перемещения головы.

Центральный отдел вестибулярной системы

Аксоны чувствительных нейронов, тела которых располагаются в вестибулярном ганглии, следуют в продолговатый мозг и оканчиваются в четырех парных вестибулярных ядрах. Приходящие в эти ядра импульсы от рецепторов дают точную информацию о положении в пространстве исключительно головы (но не всего тела!), поскольку она может быть наклонена или повернута относительно туловища. Для восприятия положения тела в пространстве необходим также учет угла наклона и поворота головы относительно туловища, поэтому вестибулярные ядра получают дополнительные стимулы от проприорецепторов мышц шеи.

Ядра вестибулярного нерва и их связи

Ядра вестибулярного нерва и их связи

Далее от вестибулярных ядер афферентная импульсация направляется к нейронам специфических ядер таламуса, а отростки последних достигают постцентральной извилины коры больших полушарий головного мозга

Проприоцептивная система

Благодаря проприоцепции, мы ощущаем положение конечностей, движение и степень мышечного напряжения в них. Это дает человеку чувство “опоры”, т.е. осознание, что стопы опираются на какую-либо поверхность, удерживая вес тела. Рецепторный аппарат проприоцептивной чувствительности, расположен в мышцах, сухожилиях, фасциях, капсулах суставов, а также в коже.

Необходимо отметить, что важную роль в поддержании равновесия тела играют рецепторы глубокой чувствительности, расположенные не только в конечностях, но и в структурах шеи, главным образом, в глубоких мышцах. Информация, получаемая головным мозгом от этих рецепторов, необходима для пространственной ориентации человека, поддержании его позы, а также координинации движения головы и туловища.

Зрительная система

Эффективное поддержание равновесия требует четкого контроля со стороны зрительной системы (в соответствие с принципом обратной связи). При этом контроль над движениями мышц глазного яблока является чрезвычайно сложным процессом. Существует 3 основных системы контроля взора:

  1. Система саккадических движений глазных яблок;
  2. Система плавных (следящих) движений глазных яблок;
  3. Вестибуло-окулярная система.

В пределах головного мозга эти системы контролируются определенными анатомическими зонами, которые являются в значительной степени изолированными, и обеспечивают две главные функции:

  1. зафиксировать предмет рассматривания в периферии визуальной области, поворачивая к нему глаза;
  2. удержать изображение предмета рассматривания устойчивым на ямке сетчатки.
Система саккадических движений глазных яблок

Когда объект интереса появляется в периферии визуальной области, происходит быстрый поворот глазных яблок в его сторону, так, что изображение объекта проецируется на сетчатку в области желтого пятна. Тот же самый двигательный ответ глазных яблок может быть вызван внезапным звуком или болезненным стимулом. Такое быстрое движение глаз называется саккадическим, от французского слова, означающего резкое движение парусника при ветре или дергание головы лошади от потягивания узды. В целом, система саккадических движений глазных яблок обеспечивает обнаружение зрительной цели и выведение ее на наиболее чувствительную часть сетчатой оболочки. Саккады возникают, например, в процессе чтения, при этом глаза человека обычно совершают несколько саккадических движений на каждой строке. Кроме того, они появляются, когда человек рассматривает какой-либо объект (картину, скульптуру и пр.), но в этом случае саккады совершаются в разных направлениях (вверх, вниз, в стороны и под углом) последовательно от одной точки объекта к другой.

Классическое изображение, описывающее саккадические движение глазных яблок при рассматривании объекта

Классическое изображение, описывающее саккадические движение глазных яблок
при рассматривании объекта

Система плавных (следящих) движений глазных яблок

Когда объект рассматривания перемещается, саккадическая система может первоначально зафиксировать его, но скоро теряет, поскольку изображение ускользает из области желтого пятна (сетчатое скольжение). Плавные (следящие) движения глаз необходимы для длительной фиксации движущегося объекта и слежения за ним. После того как визуальная цель выбрана, система работает вне волевого контроля.

Схематическое изображение функционирования системы плавных (следящих) движений глаз.

Схематическое изображение функционирования системы
плавных (следящих) движений глаз

Вестибуло-окулярная система

В то время как система следящих движений глазных яблок фиксирует изображение перемещающегося объекта рассматривания на желтом пятне, существует другая система, которая позволяет стабилизировать изображение неподвижного объекта рассматривания на сетчатке во время движения головы. Это основная функция вестибуло-окулярной системы. Благодаря ее наличию у человека во время движения на транспорте по неровной дороге или ходьбе не возникает проблем с четким рассматриванием отдаленного объекта. В том случае, когда по какой-либо причине вестибуло-окулярная система не работает возникает феномен, называющийся “осциллопсия” – “дергание” визуальной картинки при движении.

Мозжечок

Основная функция мозжечка заключается в получении информации о положении тела в пространстве от всех органов чувств и регуляции на ее основе мышечного тонуса и движений для поддержания равновесия и выполнения точных действий.

Для больных с повреждением мозжечка характерна астазия-абазия – нарушение способности к сохранению равновесия тела при стоянии и ходьбе. Больные ходят, широко расставив ноги – так называемая туловищная атаксия (“пьяная походка”).

Ходьба на пятках и носках невозможна. Атаксия в данном случае развивается вследствие неспособности головного мозга координировать деятельность мышц в процессе преодоления силы тяжести. Также выявляются глазодвигательные расстройства. Они проявляются нарушением фиксации взора на неподвижных или двигающихся объектах, в результате чего возникают рывковые движения глаз при слежении. Также характерен вертикальный нистагм, бьющий вверх или вниз.

научная статья по теме РЕГУЛЯЦИЯ ПОЛОЖЕНИЯ ГОЛОВЫ В НОРМЕ, ПРИ ПРАВОСТОРОННЕЙ И ЛЕВОСТОРОННЕЙ ФОРМАХ ЦЕРВИКАЛЬНОЙ ДИСТОНИИ Биология

РЕГУЛЯЦИЯ ПОЛОЖЕНИЯ ГОЛОВЫ В НОРМЕ, ПРИ ПРАВОСТОРОННЕЙ И ЛЕВОСТОРОННЕЙ ФОРМАХ ЦЕРВИКАЛЬНОЙ ДИСТОНИИ - тема научной статьи по биологии из журнала Физиология человека

Текст научной статьи на тему «РЕГУЛЯЦИЯ ПОЛОЖЕНИЯ ГОЛОВЫ В НОРМЕ, ПРИ ПРАВОСТОРОННЕЙ И ЛЕВОСТОРОННЕЙ ФОРМАХ ЦЕРВИКАЛЬНОЙ ДИСТОНИИ»

ФИЗИОЛОГИЯ ЧЕЛОВЕКА, 2009, том 35, № 2, с. 33-39

РЕГУЛЯЦИЯ ПОЛОЖЕНИЯ ГОЛОВЫ В НОРМЕ, ПРИ ПРАВОСТОРОННЕЙ И ЛЕВОСТОРОННЕЙ ФОРМАХ ЦЕРВИКАЛЬНОЙ ДИСТОНИИ

© 2009 г. А. Г. Нарышкин*, Т. А. Скоромец*, А. Л. Горелик*, А. Ю. Егоров**

*Научно-исследовательский психоневрологический институт им. В.М. Бехтерева, Санкт-Петербург **Институт эволюционной физиологии и биохимии им. И.М. Сеченова, РАН, Санкт-Петербург

Поступила в редакцию 01.07.2008 г.

Приведены результаты изучения пространственно-временного распределения когерентных связей ЭЭГ у 10 здоровых испытуемых-правшей в состоянии спокойного бодрствования при положении головы прямо и при фиксированных произвольных поворотах головы вправо и влево, раздельно в каждом стандартном диапазоне частот ЭЭГ (А, 0, а и в). Результаты сравнивались с данными, полученными при обследовании больных-правшей с правосторонней (ПФ; п = 9) и левосторонней (ЛФ; п = 8) формами цервикальной дистонии (ЦД). Показано, что количество сильных и средних когерентных связей ЭЭГ у здоровых испытуемых при произвольном повороте головы вправо возрастает существенно больше, чем при повороте влево. Это, очевидно, объясняется большей функциональной значимостью контроля над правой половиной визуального пространства как области манипулирования доминантной руки. При правосторонней форме ЦД по сравнению с физиологическим поворотом головы вправо у здоровых отмечается резкое увеличение количества внутри- и межпо-лушарных сильных и средних когерентных связей ЭЭГ во всех четырех исследованных частотных диапазонах. При левосторонней форме ЦД, напротив, имеет место существенно менее выраженная реорганизация пространственной структуры биопотенциального поля мозга по сравнению с уровнем когерентных связей ЭЭГ при произвольном повороте головы влево здоровыми испытуемыми. Возможно, этот феномен отражает более глубокую недостаточность нейрофизиологических механизмов контроля позы и компенсации его нарушений у больных с левосторонней формой ЦД, что и приводит их к большей инвалидизации, чем больных с правосторонней формой.

Известно, что в норме поворот головы в ту или иную сторону обеспечивается сокращением противоположной стороне поворота грудино-ключично-сосцевидной мышцы при одновременном расслаблении одноименной мышцы на стороне поворота. При этом трапециевидная мышца на стороне, противоположной повороту головы, расслабляется, а на стороне поворота сокращается. Следовательно, грудино-ключично-сосцевидная мышца, контрала-теральная повороту головы, и трапециевидная мышца на стороне поворота оказываются контра-

латеральными агонистами> а грудино-ключично-сосцевидная мышца и трапециевидная мышца одной стороны - ипсилатеральными антагонистами. Односторонние грудино-ключично-сосцевидная и трапециевидная мышцы являются, таким образом, контралатеральными антагонистами.

Биомеханическая специфика данного моторного акта обусловлена тем, что поворот головы в сторону является биологически особо важной, эволю-ционно сложившейся стереотипной реакцией, кото-

1 Приведенные курсивом обозначения являются авторскими и введены, чтобы подчеркнуть сложность исследуемого двигательного акта.

рая регулируется высоко координированным взаимодействием соответствующих центров обоих полушарий. Одинаков ли вклад каждого из полушарий в билатеральную организацию поворота головы в ту или иную сторону? Принимая во внимание сведения о функциональной специализации полушарий, в том числе и в обеспечении моторных процессов [1], можно предполагать, что и при поворотах головы в разные стороны имеется некоторая асимметричность в деятельности центральных механизмов регуляции положения головы у вполне здоровых людей, при том что биологическая значимость правой половины периперсонального пространства для правшей существенно выше, чем левого.

Очевидно, что более выраженную билатеральную асимметрию в обеспечении центральной регуляции данного моторного акта можно ожидать при цервикальной дистонии - ЦД (синоним: спастическая кривошея). Это заболевание характеризуется наследственно обусловленным двусторонним поражением экстрапирамидной системы и проявляется стойким непроизвольным поворотом головы в ту или иную сторону. Какие изменения в системной деятельности мозга воз-

никают при этом "модельном нарушении" и в какой степени они могут отражаться в билатеральной организации стандартных межрегиональных взаимосвязей сигналов ЭЭГ, особенно в свете хорошо известной специфичности право- и левосторонней форм заболевания? Ответ на эти вопросы и является задачей настоящего исследования.

В исследовании участвовали 17 больных с ЦД, правшей, имеющих непроизвольную фиксацию поворота головы вправо (правостороння форма - ПФ; п = 9) и влево (левосторонняя форма - ЛФ; п = 8). Было проведено ЭЭГ-исследование по стандартному международному протоколу с помощью компьютерного электроэнцефалографа "Телепат-104". Запись производили в затемненном помещении в положении лежа, с закрытыми глазами с 16 электродов, установленных по 8 над каждым полушарием по международной схеме 10-20 в модификации Юнга, с отведением от каждого полушария к одноименной мочке уха. Протяженность безартефактной записи составляла 30-60 с при полосе пропускания 0.3-30 ГЦ, эпоха анализа 4 с, перекрывание эпох 50%, частота дискретизации - 254 в секунду.

Помимо визуальной оценки исследовали пространственно-временную организацию ЭЭГ с применением функции когерентности [2, 3]. Анализировали записи в стандартных частотных диапазонах (А, б, а, в). Вычисление коэффициентов когерентности по каждому отведению ЭЭГ относительно всех других отведений и раздельно в каждом частотном диапазоне осуществляли средствами встроенного сертифицированного пакета программного обеспечения ""^пЕЕв", после чего вычисляли средние коэффициенты когерентности между отведениями ЭЭГ для каждой обследуемой подгруппы. При этом выделяли только два уровня интенсивности когерентных связей: средние - с коэффициентами когерентности 0.45-0.64 и сильные - с коэффициентами когерентности от 0.65 и выше.

Полученные у больных с ЦД данные сравнивались с результатами обследования 10 здоровых испытуемых (правшей) в трех состояниях: при положении "голова прямо" и при фиксированных положениях "голова вправо" и "голова влево". Такой прием был применен для определения разницы между корковыми механизмами, формирующими физиологический либо патологический поворот головы. Уровень достоверности различий между данными, полученными у здоровых испытуемых и у больных ЦД, определяли с помощью непараметрического критерия Уайта.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

После фиксации здоровыми испытуемыми головы в положении "поворот вправо" или "поворот влево" количество сильных и средних когерентных связей изменяется. Так, в А- и б-диапазо-нах количество сильных и средних связей при повороте вправо увеличивается с 8 до 12, при повороте влево снижается до 7. Но особенно радикально этот показатель меняется в а-диапазоне: при повороте головы вправо общее количество когерентных связей ЭЭГ возрастает с 18 до 29, при повороте влево - с 18 до 19, при том, что пространственное распределение когерентных связей в положениях "голова вправо" и "голова влево" в рамках каждого из частотных диапазонах приобретает черты выраженного сходства. Однако характерно, что в положении "голова влево" в а-диапазоне отмечаются исключительно гетеро-латеральные дистантные когерентные связи между лобными и затылочно-теменными областями, а в положении "голова вправо" между этими зонами формируются и гомолатеральные связи. Обращает на себя внимание и их очевидная билатеральная симметричность. Данный феномен может быть обусловлен большей функциональной значимостью для правшей именно правой половины пери-персонального пространства - областью, сопряженной с доминантной правой рукой и требующей усиленного визуального контроля.

Однако подобная реорганизация межрегиональных взаимодействий практически не отражается в в-диапазоне. На наш взгляд, это связано с тем, что в нашем исследовании испытуемым, как здоровым, так и больным, не ставились какие-либо когнитивные задачи, решение которых требует

Анатомия и физиология позвоночника

ап1.jpg

Позвоночник человека - это очень непростой механизм, правильная работа которого влияет на функционирование всех остальных механизмов организма.

Позвоночник (от лат. «columna vertebralis», синоним - позвоночный столб) состоит из 32 - 33 позвонков (7 шейных, 12 грудных, 5 поясничных, 5 крестцовых, соединенных в крестец, и 3 - 4 копчиковых), между которыми расположены 23 межпозвоночных диска.

Связочно-мышечный аппарат, межпозвоночные диски, суставы соединяют позвонки между собой. Они позволяют удерживать его в вертикальном положении и обеспечивают необходимую свободу движения. При ходьбе, беге и прыжках эластичные свойства межпозвоночных дисков, значительно смягчают толчки и сотрясения, передаваемые на позвоночник, спинной и головной мозг.

Физиологические изгибы тела создают позвоночнику дополнительную упругость и помогают смягчать нагрузку на позвоночный столб.

Позвоночник является главной опорной структурой нашего тела. Без позвоночника человек не мог бы ходить и даже стоять. Другой важной функцией позвоночника является защита спинного мозга. Большая частота заболеваний позвоночника у современного человека обусловлена, главным образом, его «прямохождением», а также высоким уровнем травматизма.

Отделы позвоночника: В позвоночнике различают шейный, грудной, поясничный отделы, крестец и копчик. В процессе роста и развития позвоночника формируется шейный и поясничный лордозы, грудной и крестцово – копчиковый кифозы, превращающие позвоночник в «пружинящую систему», противостоящую вертикальным нагрузкам. В медицинской терминологии, для краткости, для обозначения шейных позвонков используется латинская буква «С» - С1 - С7, для обозначения грудных позвонков – «Th» - Th1 - Th12, поясничные позвонки обозначаются буквой «L» - L1 - L5.

Шейный отдел. Это самый верхний отдел позвоночного столба. Он отличается особой подвижностью, что обеспечивает такое разнообразие и свободу движения головы. Два верхних шейных позвонка с красивыми названиями атлант и аксис, имеют анатомическое строение, отличное от строения всех остальных позвонков. Благодаря наличию этих позвонков, человек может совершать повороты и наклоны головы.

Грудной отдел. К этому отделу прикрепляются 12 пар рёбер. Грудной отдел позвоночника участвует в формировании задней стенки грудной клетки, которая является вместилищем жизненно важных органов. В связи с этим грудной отдел позвоночника малоподвижен.

Позвонок состоит из тела, дуги, двух ножек, остистого, двух поперечных и четырёх суставных отростков. Между дугой, телом и ножками позвонков находятся позвонковые отверстия, из которых формируется позвоночный канал.

Между телами двух смежных позвонков располагается межпозвонковый диск, состоящий из фиброзного кольца и пульпозного ядра и выполняющий 3 функции: амортизация, удержание смежных позвонков, обеспечение подвижности тел позвонков. Вокруг ядра располагается многослойное фиброзное кольцо, которое удерживает ядро в центре и препятствует сдвиганию позвонков в сторону относительно друг друга.

Фиброзное кольцо имеет множество слоев и волокон, перекрещивающихся в трех плоскостях. В нормальном состоянии фиброзное кольцо образовано очень прочными волокнами. Однако в результате дегенеративного заболевания дисков (остеохондроза) происходит замещение волокон фиброзного кольца на рубцовую ткань. Волокна рубцовой ткани не обладают такой прочностью и эластичностью как волокна фиброзного кольца. Это ведет к ослаблению межпозвоночного диска и при повышении внутридискового давления может приводить к разрыву фиброзного кольца.

Значительное повышение давления внутри межпозвоночных дисков может привести к разрыву фиброзного кольца и выходу части пульпозного ядра за пределы диска. Так формируется грыжа диска, которая может приводить к сдавлаванию нервных структур, что вызывает, в свою очередь появление болевого синдрома и неврологических нарушений.

Связочный аппарат представлен передней и задней продольными, над – и межостистыми связками, жёлтыми, межпоперечными связками и капсулой межпозвонковых суставов. Два позвонка с межпозвоночным диском и связочным аппаратом представляют позвоночный сегмент.

При разрушении межпозвоночных дисков и суставов связки стремятся компенсировать повышенную патологическую подвижность позвонков (нестабильность), в результате чего происходит гипертрофия связок.Этот процесс ведет к уменьшению просвета позвоночного канала, в этом случае даже маленькие грыжи или костные наросты (остеофиты) могут сдавливать спинной мозг и корешки.

Такое состояние получило название стеноза позвоночного канала. Для расширения позвоночного канала производится операция декомпрессии нервных структур.

В позвоночном канале расположен спинной мозг и корешки «конского хвоста». Спинной мозг начинается от головного мозга и заканчивается на уровне промежутка между первым и вторым поясничными позвонками коническим заострением. Далее от спинного мозга в канале проходят спинномозговые нервные корешки, которые формируют так называемый «конский хвост».
Спинной мозг окружён твёрдой, паутинной и мягкой оболочками и фиксирован в позвоночном канале корешками и клетчаткой. Твердая мозговая оболочка формирует герметичный соединительнотканный мешок (дуральный мешок), в котором расположены спинной мозг и несколько сантиметров нервных корешков.Спинной мозг в дуральном мешке омывает спинномозговая жидкость (ликвор).

От спинного мозга отходит 31 пара нервных корешков. Из позвоночного канала нервные корешки выходят через межпозвоночные (фораминарные) отверстия, которые образуются ножками и суставными отростками соседних позвонков.

У человека, так же как и у других позвоночных, сохраняется сегментарная иннервация тела. Это значит, что каждый сегмент спинного мозга иннервирует определенную область организма.

Например, сегменты шейного отдела спинного мозга иннервируют шею и руки, грудного отдела - грудь и живот, поясничного и крестцового - ноги, промежность и органы малого таза (мочевой пузырь, прямую кишку).

По периферическим нервам нервные импульсы поступают от спинного мозга ко всем органам нашего тела для регуляции их функции. Информация от органов и тканей поступает в центральную нервную систему по чувствительным нервным волокнам.

Большинство нервов нашего организма имеют в своем составе чувствительные, двигательные и вегетативные волокна.
Спинной мозг имеет два утолщения: шейное и поясничное. Поэтому межпозвоночные грыжи шейного отдела позвоночника более опасны, чем поясничного.

Врач, определяя в какой области тела, появились расстройства чувствительности или двигательной функции, может предположить, на каком уровне произошло повреждение спинного мозга.

©2010-2013 Федеральный центр травматологии, ортопедии и эндопротезирования

Обзор вегетативной нервной системы (Overview of the Autonomic Nervous System)


Вегетативная нервная система отвечает за регуляцию различных физиологических процессов. Эта регуляция осуществляется без сознательного контроля, т.е. автономно. ВНС можно подразделить на 2 основных группы:

Нарушение работы вегетативной нервной системы приводит к вегетативной недостаточности или расстройству и может затрагивать любую систему органов.

Анатомия вегетативной нервной системы

Вегетативная нервная система получает импульсацию из различных отделов центральной нервной системы (ЦНС), участвующих в обработке и интеграции информации о состоянии внутренней среды организма и воздействии раздражителей из окружающей среды. К этим структурам относятся гипоталамус, ядро одиночного пути, ретикулярная формация, миндалина, гиппокамп и обонятельная кора.

Симпатическая и парасимпатическая системы – каждая из них имеет 2 вида нервных клеток:

Преганглионарные: находятся в ЦНС, соединяясь с другими клетками в ганглиях, находящихся за пределами ЦНС.

Постганглионарные: содержат эфферентные волокна, идущие от ганглиев эффекторных органов (см. рисунок Анатомическое строение нервной системы [ The autonomic nervous system Вегетативная нервная система ]).

Вегетативная нервная система

Симпатический отдел ВНС

Тела преганглионарных клеток симпатической нервной системы располагаются в боковых рогах спинного мозга между Т1 и L2-L3 сегментами.

Симпатические ганглии расположены рядом со спинным мозгом и подразделяются на вертебральные (симпатический ствол, или симпатическая цепочка) и превертебральные, включая верхний шейный, чревный, верхний мезентериальный, нижний мезентериальный и аорторенальный ганглии.

Длинные волокна идут от этих ганглиев к эффекторным органам, в том числе к следующим:

Гладкая мускулатура кровеносных сосудов, висцеральных органов, легких, кожи волосистой части головы (мышцы, поднимающие волосы) и зрачков

Железы (потовые, слюнные и пищеварительной системы)

Парасимпатический отдел ВНС

Тела преганглионарных клеток парасимпатической нервной системы располагаются в стволе головного мозга и крестцовых сегментах спинного мозга. Преганглионарные волокна покидают ствол головного мозга в составе 3, 7, 9 и 10 (блуждающего) черепных нервов, а от спинного мозга отходят на уровне сегментов S2 и S3; блуждающий нерв содержит в своем составе порядка 75% всех парасимпатических волокон.

Парасимпатические ганглии (например, реснитчатый, крылонебный, ушной, тазовый и блуждающий ганглии) расположены внутри эффекторных органов, в связи с чем длина постганглионарных волокон составляет от 1 до 2 мм. Таким образом, парасимпатическая система может вызывать специфические, локализованные реакции в эффекторных органах, таких как:

Кровеносные сосуды головы, шеи и внутренних органов грудной и брюшной полостей;

Слезные и слюнные железы;

Гладкая мускулатура внутренних желез и органов (например, печени, селезенки, толстой кишки, почек, мочевого пузыря, половых органов);

Физиология вегетативной нервной системы

Вегетативная нервная система отвечает за регуляцию артериального давления, частоты сердечных сокращений, температуры тела, массы тела, пищеварения, уровня метаболизма, водно-электролитного баланса, потоотделения, мочеиспускания, дефекации, сексуальной функции и прочих процессов. . Многие органы контролируются преимущественно либо симпатической, либо парасимпатической системой, несмотря на то, что получают импульс от обоих отделов. В частных случаях влияние этих двух отделов на функцию органа является противоположным (например, симпатическая нервная система повышает частоту сердечных сокращений, а парасимпатическая – понижает ее).

Симпатическая нервная система обладает катаболическим действием; она активирует реакцию «бей или беги».

Парасимпатическая нервная система обладает анаболическим действием, она сохраняет и восстанавливает гомеостаз (см. таблицу Отделы вегетативной нервной системы [Divisions of the Automatic Nervous System] Отделы вегетативной нервной системы ).

В вегетативной нервной системе присутствует два главных нейромедиатора:

Ацетилхолин: к холинергическим волокнам (выделяющим ацетилхолин) относятся все преганглионарные, постганглионарные парасимпатические и часть постганглионарных симпатических волокон (иннервирующих мышцы, поднимающих волосы, потовые железы и кровеносные сосуды).

Норадреналин : к норадренергическим (выделяющим норадреналин) относится большинство постганглионарных симпатических волокон. В определенной степени потовые железы на ладонях и подошвах также отвечают на адренергическую стимуляцию.

Существует несколько подтипов адренорецепторов Норадреналин и холинорецепторов Ацетилхолин , имеющих различную локализацию.

Этиология вегетативной недостаточности

Заболевания, приводящие к вегетативной недостаточности, могут характеризоваться поражением как периферического, так и центрального отделов нервной системы и иметь как первичный, так и вторичный характер по отношению к иным болезням.

К наиболее частым причинам вегетативной недостаточности относятся:

Прочие причины включают в себя:

Определенные лекарственные препараты

Некоторые вирусные инфекции, возможно, включая COVID-19

Повреждение нервов в области шеи, в том числе в результате операции

Вегетативная недостаточность, которая наблюдается при COVID-19, обычно развивается после разрешения симптомов со стороны дыхательной системы и других острых системных симптомов COVID. Обычным проявлением является синдром постуральной ортостатической тахикардии (POTS) с характерными аномальными вегетативными реакциями (например, головокружением) при смене положения на вертикальное (ортостатическая гипотензия). Неизвестно, является ли механизм вирусным или иммуноопосредованным.

Обследование вегетативной недостаточности

Анамнез

Следующие симптомы позволяют предполагать вегетативную недостаточность:

Ортостатическая неустойчивость (развитие таких вегетативных симптомов, как головокружение, уменьшающееся в положении сидя) вследствие ортостатической гипотензии или синдрома постуральной ортостатической тахикардии

Нарушение контроля мочеиспускания и дефекации

Эректильная дисфункция (ранний симптом)

Прочие возможные симптомы включают в себя сухость глаз и сухость во рту, но они являются менее специфичными.

Объективное обследование

К важным моментам физикального обследования относятся:

Оценка артериального давления и частоты сердечных сокращений при смене положения тела: у пациента с нормальным водным балансом наличие устойчивого (например, > 1 минуты) снижения систолического артериального давления на ≥ 20 мм. рт. ст. или диастолического на ≥ 10 мм. рт. ст. в положении стоя свидетельствует о ортостатической гипотензии Ортостатическая гипотензия Ортостатическая (постуральная) гипотензия – это чрезмерное снижение артериального давления (АД) при принятии вертикального положения. Ее принято диагностировать при снижении систолического АД. Прочитайте дополнительные сведения . Необходимо также оценивать изменение частоты сердечных сокращений в зависимости от дыхания и положения тела; отсутствие физиологической синусовой аритмии и отсутствие увеличения частоты сердечных сокращений при переходе в положение стоя указывают на вегетативную недостаточность. В противоположность этому у пациентов с синдромом ортостатической постуральной тахикардии Синдром постуральной ортостатической тахикардии Ортостатическая (постуральная) гипотензия – это чрезмерное снижение артериального давления (АД) при принятии вертикального положения. Ее принято диагностировать при снижении систолического АД. Прочитайте дополнительные сведения (доброкачественное нарушение), как правило, развивается постуральная тахикардия без артериальной гипотензии.

Офтальмологическое исследование: в пользу нарушения симпатической иннервации свидетельствуют миоз и слабый птоз ( синдром Горнера Синдром Горнера Синдром Горнера характеризуется наличием птоза, миоза и ангидроза вследствие поражения шейного симпатического ганглия. (См. также Обзор вегетативной нервной системы (Overview of the Autonomic. Прочитайте дополнительные сведения

Оценка рефлексов мочеполовых органов и прямой кишки: патологические рефлексы могут свидетельствовать о нарушении вегетативной функции. Проверяются кремастерный рефлекс (в норме штриховое раздражение кожи верхней внутренней области бедра приводит к подтягиванию яичка на стороне раздражения), анальный рефлекс (в норме штриховое раздражение кожи вокруг заднего прохода приводит к сокращению анального сфинктера) и бульбокавернозный рефлекс (в норме сдавление головки полового члена или клитора приводит к сокращению анального сфинктера). На практике рефлексы мочеполовых органов и прямой кишки редко проверяются, поскольку лабораторные исследования гораздо более надежны.

Лабораторные исследования

В случае если у пациента имеются симптомы и признаки, позволяющие предполагать вегетативную недостаточность, с целью уточнения тяжести и степени вовлечения в патологический процесс различных органов и систем, как правило, проводятся судомоторные и кардиовагальные пробы, а также пробы на адренергическую недостаточность.

Судомоторные пробы включают в себя следующее:

Количественную оценку судомоторного аксон-рефлекса: В этом тесте оценивается целостность постганглионарных волокон. Постганглионарные волокна активируют раствором ацетилхолина с использованием электрофореза. Обрабатываются определенные участки голени и запястья, с последующим измерением объема пота. Тест может обнаружить снижение или отсутствие потоотделения.

Терморегулирующий тест на потоотделение: это исследование оценивает функцию как преганглионарных, так и постганглионарных волокон. На кожу исследуемого наносится специальный краситель, после чего пациента помещают в закрытое нагреваемое помещение с целью вызвать максимальное потоотделение. Выделение пота приводит к изменению цвета красителя, что позволяет выявить зоны ангидроза и гипогидроза и подсчитать их площадь в процентах от общей площади поверхности тела (BSA).

Кардиовагальные пробы оценивают реакцию сердечного ритма (по ЭКГ) на глубокое дыхание и пробу Вальсальвы. Если вегетативная нервная система функционирует должным образом, частота сердечных сокращений изменяется в ответ на проведение этих проб; нормальная реакция на них варьирует в зависимости от возраста пациента.

Пробы на адренергическую недостаточность оценивают изменение артериального давления в ответ на:

Проба с запрокидыванием головы назад (ортостатическая проба):при изменении притока крови происходит рефлекторное изменение артериального давления и частоты сердечных сокращений. Эта проба помогает отделить вегетативные полинейропатии Вегетативные полинейропатии Вегетативные полинейропатии относятся к заболеваниям периферической нервной системы с преимущественным поражением вегетативных волокон. (См. также Обзор вегетативной нервной системы (Overview. Прочитайте дополнительные сведения от синдрома постуральной ортостатической тахикардии.

Проба Вальсальвы: повышает внутригрудное давление и уменьшает венозный отток, что приводит к изменениям артериального давления и пульса как проявлению вагусной и адренэргической составляющих регуляции давления.

Таким образом, характер ответной реакции на проведение двух указанных выше проб дает представление об адренергической регуляции.

Авторское право © 2022 Merck & Co., Inc., Rahway, NJ, США и ее аффилированные лица. Все права сохранены.

Читайте также: