Симпатические воздействия на сердце. Влияние симпатических нервов на сердце.

Обновлено: 16.05.2024

1 Кандидат медицинских наук, ассистент кафедры, 2 Кандидат медицинских наук, ассистент кафедры, 3 Кандидат медицинских наук, ассистент кафедры, Доктор медицинских наук, Профессор, заведующий кафедрой, Ярославский государственный медицинский университет

ВЛИЯНИЕ ВЕГЕТАТИВНОЙ НЕРВНОЙ РЕГУЛЯЦИИ НА РАЗВИТИЕ СЕРДЕЧНЫХ АРИТМИЙ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

Аннотация

У больных сердечно-сосудистыми заболеваниями, особенно ишемической болезнью сердца (ИБС), отмечается выраженное ремоделирование миокарда, происходит перестройка вегетативной нервной системы сердца. Это ведет к нарушению как симпатических, так и парасимпатических регуляторных влияний. Рассогласования между электрофизиологическими процессами в миокарде, эфферентной импульсацией из центральных структур и состоянием афферентных связей, а также дисфункция самих центральных нервных структур могут служить причиной электрической нестабильности миокарда и способствовать возникновению фатальных нарушений сердечного ритма, приводящих к наступлению кардиальной смерти.

Ключевые слова: вегетативная нервная система, ишемическая болезнь сердца, электрическая нестабильность миокарда, нарушения ритма сердца.

Lysenkova N.O. 1 , Rumyancev M.I. 2 , Zhilina A.N. 3 , Kratnov A.E. 4

1 MD, assistant of the Department of therapy of pediatric faculty, 2 MD, assistant of the Department of therapy of pediatric faculty, 3 MD, assistant of the Department of therapy of pediatric faculty, 4 MD, Professor, Head of the Department of therapy of pediatric faculty, Yaroslavl State Medical University

THE INFLUENCE OF AUTONOMIC NERVOUS REGULATION ON THE DEVELOPMENT OF CARDIAC ARRHYTHMIAS IN PATIENTS WITH CORONARY HEART DISEASE

Abstract

In patients with cardiovascular diseases, especially coronary heart disease, there is a marked remodeling of the myocardium, there is a rearrangement of the autonomic nervous system of the heart. This leads to disruption of both sympathetic and parasympathetic regulatory influences. The mismatch between electrophysiological processes in the myocardium, with efferent impulses from the central agencies and the state of the afferent connections, and also themselves dysfunction of the central nervous structures can cause electrical instability of the myocardium and lead to fatal cardiac arrhythmias leading to cardiac death occurrence.

Keywords: autonomic nervous system, coronary heart disease, electrical instability of the myocardium, arrhythmias.

Одной из актуальных проблем современной кардиологии является своевременное определение у больных ИБС риска развития угрожающих жизни аритмий и наступления кардиальной смерти [1]. Данные клинических и морфологических исследований доказывают тесную взаимосвязь развития кардиальной смерти с наличием фатальных нарушений ритма, дисфункцией ВНС, нейрогуморальными механизмами, и сниженной ФВ левого желудочка у больных ИБС [17]. Определяющим условием для возникновения фатальных аритмий признается наличие структурной патологии сердца, которое под действием различных функциональных факторов становится электрически нестабильным [25]. Кроме того, существуют данные, согласно которым нестабильность электрофизиологических процессов в миокарде у пациентов, страдающих ИБС, в первую очередь связана с нарушением регуляции вегетативного и электролитного баланса [7, 19].

Сердце иннервируется вегетативной нервной системой (ВНС), состоящей из симпатических и парасимпатических нервов. Симпатические нервы, стимулируя β-адренорецепторы синусового узла, увеличивают частоту сердечных сокращений (ЧСС). Раздражение блуждающего нерва, в свою очередь, стимулирует М-холинорецепторы синусового узла, вследствие чего развивается брадикардия. Синусовый и атриовентрикулярный узлы находятся в основном под влиянием блуждающего нерва и, в меньшей степени, симпатического, в то время как желудочки контролируются преимущественно симпатическим нервом [28, 37]. Деятельность ВНС контролируется центральной нервной системой и рядом гуморальных влияний. В продолговатом мозге расположен сердечно-сосудистый центр, который объединяет парасимпатический, симпатический и сосудодвигательный центры. Регуляция этих центров осуществляется подкорковыми узлами и корой головного мозга. На ритмическую деятельность сердца влияют импульсы, исходящие из сердечно-аортального, синокаротидного и других сплетений. Также на сердечно-сосудистый центр действуют гуморальные нарушения, изменения в крови (парциального давления углекислого газа и кислорода, кислотно-основного состояния), хеморецепторный рефлекс [11]. В состоянии покоя доминирует тонус вагуса и изменчивость сердечной периодики в значительной степени зависит от его влияний. Вагусная и симпатическая активность находятся в постоянном взаимодействии. Поскольку синусовый узел богат холинэстеразой, действие любого вагусного импульса краткосрочно, так как ацетилхолин быстро гидролизируется. Преобладание парасимпатических влияний над симпатическими может быть объяснено двумя независимыми механизмами: холинергически индуцируемым снижением высвобождения норадреналина в ответ на симпатическую стимуляцию и холинергическим подавлением ответа на адренергический стимул. Афферентная вагусная стимуляция приводит к рефлекторному возбуждению эфферентной вагусной активности и ингибированию эфферентной симпатической активности [37]. Эффекты противоположно ориентированного рефлекса опосредуются стимуляцией афферентной симпатической активности [33]. Эфферентная вагусная активность также находится под тоническим сдерживающим влиянием афферентной кардиальной симпатической активности [16]. Эфферентная симпатическая и вагусная импульсации, направленные на синусовый узел, характеризуются разрядом, преимущественно синхронизированным с каждым сердечным циклом.

Литературные данные о роли вегетативной регуляции в аритмогенезе неоднозначны. В последнее время активно обсуждается положение о том, что повышение активности симпатического звена ВНС при ишемии миокарда приводит к возникновению нарушений ритма, тогда как активация парасимпатического звена обладает протективным эффектом [36]. Однако, при гистологическом исследовании миокарда у пациентов, погибших внезапно, было выявлено нарушение автономной регуляции, обширные очаги истощения катехоламинов в адренергических сплетениях миокарда и изменения вегетативных нервных ганглиев. Показано, что ишемические изменения в области нижней стенки левого желудочка вызывают активацию парасимпатического отдела ВНС, а в передней стенке приводят к повышению тонуса симпатических афферентных нервов [3].

Известно, что у больных ИБС, отмечается выраженное ремоделирование миокарда, происходит перестройка вегетативной нервной системы сердца. Это ведет к нарушению как симпатических, так и парасимпатических регуляторных влияний. Особого внимания заслуживает активация симпатоадреналовой системы и снижение активности парасимпатического отдела ВНС, связанные как с развитием общего адаптационного синдрома, так и со значительной структурной перестройкой миокарда, что обуславливает увеличение электрической нестабильности, склонность к возникновению фатальных нарушений сердечного ритма [2, 9, 10, 18], тем самым повышается риск кардиальной смерти.

Известно, что вагусное влияние понижает порог возникновения угрожающих жизни желудочковых аритмий и обеспечивает “антиаритмическую защиту”, возможно, путем снижения возбудимости кардиомиоцитов, а симпатическое, напротив, повышает этот порог, что приводит к более частым аритмическим осложнениям. Выявлено, что в остром периоде инфаркта миокарда (ИМ) наблюдается повышение тонуса симпатической нервной системы и снижение тонуса парасимпатической. В ряде исследований выявлено, что снижение вагусной активности или нарушение баланса влияний ВНС на синусовый ритм в пользу симпатического отдела, наблюдаемое уже в ранние сроки обострения ИБС, сопряжено с тяжестью заболевания и сохраняется не менее 6-12 месяцев [12, 15, 29]. Есть основания полагать, что этот дисбаланс связан с повышенным риском развития тяжелых осложнений и смерти: так, существуют свидетельства проаритмического эффекта уменьшения вагусных или повышения симпатическихвлияний на сердце, а также защитного действия противоположных изменений активности ВНС [10].

Исследования показали, что большинству эпизодов ишемии миокарда (61,8%) предшествовали значимые изменения тонуса ВНС (симпатической - 61,9%, парасимпатической - 38,1%). Остальные эпизоды (38,8%) возникали на фоне неизмененной активности ВНС. Установлено, что повышение активности симпатической нервной системы достоверно уменьшает продолжительность эпизодов безболевой ишемии миокарда и увеличивает длительность приступов спонтанной стенокардии [4]. Органические изменения миокарда, особенно ИМ, вносят значительные изменения в регуляторные процессы автономной нервной системы вследствие развития “вегетативной денервации” сердца. Нарушение вегетативной регуляции сердечно-сосудистой системы может быть обусловлено усилением симпато-симпатических [13, 31, 32] и симпато-вагальных рефлексов [37]. Изменение геометрических свойств пораженного миокарда приводит к усилению афферентной симпатической стимуляции вследствие механического раздражения нервных окончаний и рефлекторному ослаблению парасимпатических влияний на сердце [31]. Также снижается ответ клеток синусового узла на изменение нейрорегуляторных механизмов.

Достаточно хорошо освещен обсуждаемый в течение длительного времени вклад ВНС в генезис нарушений ритма сердца и внезапной кардиальной смерти у больных ИБС [14]. Известно, что по мере прогрессирования ИБС зоны ишемии, а также фиброза и кардиосклероза становятся более чувствительными к воздействию катехоламинов и поэтому реагируют на малейшие изменения симпатического тонуса [27]. В последние годы выявлено, что очаговые повреждения нервных волокон в желудочках сердца у больных с перенесенным ИМ могут приводить к нарушению реполяризации и, таким образом, способствовать электрической нестабильности миокарда [7, 8].Обнаружено, что при ИМ и нестабильной стенокардии нарушения симпатической иннервации сердца превышают по площади и глубине зоны нарушенной перфузии, что объясняется большей чувствительностью нейрональных окончаний к ишемии. Предполагается, что усиление адренергических влияний на кардиомиоциты у больных с ОКС происходит вследствие снижения захвата симпатическими окончаниями сердца поступающего из кровотока норадреналина [7].

Известно, что нервная регуляция стабилизирует электрическую активность сердца. Повреждения внутрисердечных нервных волокон и ганглиев могут лежать в основе серьезных нарушений образования импульсов, проведения возбуждения и нарушения процессов реполяризации миокарда. Длительные сравнительные клинические и патологоанатомические наблюдения свидетельствуют о том, что у больных с ВКС нервные волокна часто изменены вблизи проводящей системы сердца [20, 21]. Также встречаются очаговые повреждения нервных волокон в желудочках сердца, которые могут приводить к нарушению реполяризации и способствовать электрической нестабильности миокарда [42]. В литературе описаны связи между нервными волокнами и кардиомиоцитами, особенно расположенными вблизи проводящей системы, где в большом количестве проходят периферические нервы [22, 23, 43]. Не исключено, что поражение нервных сплетений в желудочках сердца, где определяется большое количество симпатических нервов [41], вызывают нарушения реполяризации из-за изменения адренергических нервных влияний. Вблизи синусового узла могут повреждаться как симпатические, так и парасимпатические нервные элементы, и естественно предположить, что поражения нервных волокон разной медиаторной природы будет вызывать противоположное действие.

Таким образом, эпидемиологические, клинические и морфологические данные убедительно доказывают, что регуляция ВНС является одним из наиболее важных механизмов, стабилизирующих электрическую активность сердца. А повреждения внутрисердечных нервных волокон и ганглиев у больных ИБС, могут лежать в основе серьезных нарушений ритма сердца.

Annotation
The correlation of the heart rate variability indices with «sympatico-parasympathetic» balance, the role of a number of electrocardiological criteria as markers of inhomogeneity of ventricular repolarization are considered.

Широко известно, что вегетативная нервная система (ВНС) играет важную роль в патогенезе заболеваний сердца, вместе с тем возможности и преимущества электрокардиологии в плане оценки этой роли все еще остаются спорным предметом.

Структурная и функциональная гетерогенность вегетативной иннервации сердца

Парасимпатическая иннервация сердца затрагивает главным образом синоатриальный и атриовентрикулярный узлы и предсердия. В состоянии покоя симпатическая активность в них низка и преобладает парасимпатическое влияние. Некоторые парасимпатические волокна иннервируют кровеносные сосуды желудочков. Миокард желудочков весьма бедно иннервирован парасимпатическими эфферентными волокнами [1, 2], и в условиях эксперимента их стимуляция проводит к инотропному эффекту только на фоне повышенной симпатической активности, но не в условиях покоя [3]. Вагусный медиатор, ацетилхолин, весьма существенно сокращает продолжительность и изменяет форму потенциала действия кардиомиоцитов предсердий, но в миоцитах желудочков он укорачивает потенциал действия только в очень высоких концентрациях - выше физиологических значений [1]. В то время как было показано, что трансмуральная дисперсия длительности монофазного потенциала действия в «клиновидном» препарате левого желудочка собаки уменьшается при симпатической стимуляции вследствие ее укорачивающего эффекта, стимуляция блуждающего нерва оказывает лишь минимальное влияние на рефрактерность желудочков [4].

В отличие от парасимпатической иннервации, симпатические волокна распределены в изобилии во всех отделах сердца в виде терминальной сетевидной структуры, которая оплетает мышечные клетки, тесно прилегая к ним, но не проникает внутрь клетки [2]. Эффект симпатического медиатора норадреналина, также как и адреналина, высвобождающегося в кровоток из мозгового вещества надпочечников, заключается в укорочении потенциала действия, и, следовательно, изменении формы фазы 2 и 3 потенциала действия (плато и конечная реполяризация). Более быстрое восстановление потенциала является предпосылкой необходимой реактивности кардиомиоцита при увеличении частоты сокращений. Катехоламины увеличивают также медленный ток кальция внутрь клетки, действуя таким путем на механическую работу и электрические свойства клетки [1].

Было высказано предположение, что волокна миокарда, непосредственно прилежащие к окончаниям эффекторных нервов, подвергаются действию относительно больших концентраций медиатора, так что различие между эффектом стимуляции нерва и внутривенной инфузией адренергических медиаторов может быть обусловлено различиями в распространении активных агентов.

Кажущаяся противоречивость результатов вышеперечисленных экспериментальных исследований [4, 5] могла бы быть объяснена гипотезой о том, что стимуляция симпатического нерва уменьшает пространственную неоднородность, но увеличивает временную дисперсию рефрактерных периодов миоцитов желудочков.

Структурная и функциональная гетерогенность вегетативной иннервации сердца, также как и ее сложный иерархический контроль, позволяет с трудом представить, что концепция «симпатико-парасимпатического баланса» имеет физиологические основы, если рассматривать сердце как единое целое.

Вариабельность сердечного ритма и «симпатико-парасимпатический баланс»

Поскольку симпатический и парасимпатический отделы ВНС могут функционировать или независимо, или как антагонисты, или как синергисты, длительность интервала R-R не содержит какой-либо информации об уровне парасимпатического или симпатического влияния на водитель ритма. Некоторая величина этого показателя может быть результатом различных комбинаций парасимпатических и симпатических входов, невозможно установить, связано ли это только с подавлением вагусной активности или является результатом смешанного симпатического и парасимпатического влияния, или обусловлено симпатическим воздействием на водитель ритма.

Сначала полагали, что подсчет спектральных мощностей интервала R-R путем расчета соотношения между мощностями низкочастотного (около 0.1 Гц) и высокочастотного (>0.15 Гц) спектров может пролить свет на эту проблему. Предполагали, что низкочастотное колебание длительности интервала R-R происходит от колебаний мышечной симпатической активности, изменяя артериальное давление (АД) и ЧСС путем ритмического высвобождения норадреналина [6, 7]. Высокочастотный спектр колебания длительности интервала R-R представлялся опосредованным колебаниями парасимпатической активности, связанными с дыханием.

Однако, аналитический обзор физиологических основ теории симпатико-парасимпатического равновесия, предложенной Экбергом [8], показал, что эта конструкция приписывает физиологическим регуляторным механизмам такие свойства, которыми эти механизмы не обладают. Так, например, не обнаружено значимой корреляции между выбросом норадреналина и спектральной мощностью интервала R-R при частоте 0.1 Гц [9], а атропин в большой дозе ликвидировал практически всю спектральную мощность интервалов R-R в низкочастотном и высокочастотном диапазонах [10, 11]. Таким образом не существует доказательства того, что исходная мощность низкочастотного спектра интервалов R-R количественно связана с активностью симпатического сердечного нерва.

Исходно связанные с частотой дыхания колебания интервала R-R значимо, но недостаточно, связаны с уровнем активности сердечной ветви блуждающего нерва. Эти изменения, связанные с выраженными колебаниями частоты и глубины дыхания, могут быть объяснены на основе кинетики ответа синоатриального узла на введение ацетилхолина: во время медленного дыхания они выражены более полно, чем при быстром дыхании [12]. Как подчеркнуто Экбергом [8], обоснование теории симпатико-парасимпатического баланса отчасти имеет философские основы; нет никаких обязательных физиологических предпосылок того, что уровни колебаний активности симпатического и блуждающего нервов должны находиться в состоянии баланса.

Эта критика не должна отвергать возможную пользу расчета соотношения LF/HF для характеристики некого состояния регуляции сердечно-сосудистой системы без связи с «симпатико-парасимпатическим балансом». Для адекватного понимания участия ВНС в многоуровневых механизмах контроля, необходимо осознать, что их исследования должны быть физиологически осмысленными.

Электрокардиологические параметры неоднородности реполяризации желудочков как показателя влияния вегетативной нервной системы

В противоположность деполяризации, реполяризация сердца не может быть описана с точки зрения распространения фронта волны, так как в этот период центры источников и каналов мембранных токов в миокарде желудочков расположены на большом расстоянии. Их пространственное и временное распределение определяется межклеточными различиями в кинетике мембранных каналов и изменениями состава межклеточного пространства, включая действие симпатических медиаторов. В результате, сегмент ST и зубец Т находятся под влиянием одних и тех же факторов. Авторитетный обзор этой проблемы опубликован Суравичем [13].

Нижеприведенные рассуждения будут касаться некоторых редко используемых, но по-видимому перспективных показателей реполяризации желудочков. Обсуждаемые в настоящее время вопросы, например, QT-дисперсия или альтернации зубца Т, не будут рассматриваться.

Зубец Т представляет собой неисчезнувшие различия потенциалов при реполяризации желудочков. Было подсчитано, что зубец Т отражает 7-8% общего объема реполяризации, а остальное взаимно аннулируется ввиду противоположного направления волн реполяризации, так что малые локальные изменения процесса реполяризации могут оказывать драматическое влияние на форму зубца Т [14].

Ранние исследования показали изменения зубца Т при гипнотическом внушении беспокойства [15], страха предстоящего хирургического вмешательства [16], во время устного счета [17], при введении адреналина [18] и допамина [19]. Следует отметить, что при эмоциональном стрессе изменения зубца Т наблюдаются только у 40-63% людей. Амплитуда зубца Т как мера симпатических влияний на миокард была представлена и в физиологических исследованиях [20, 21].

Так как количественная обработка изменений зубца Т, неодинаковых в разных отведениях ЭКГ, сложна, в качестве удобного параметра был предложен пространственный максимальный вектор Т (sT max), регистрируемый в системе физически корригированных ортогональных отведений [22, 23]. В этом исследовании, проведенном у 21 здорового лица, 42 больных с гипертрофией желудочков и 24 пациентов с ишемической болезнью сердца 92% пациентов всей выборки реагировали на ментальный стресс (устный счет) уменьшением интервала R-R, и лишь у 65% кроме того изменялся sTmax.

Выводом вышеприведенного исследования было то, что влияние ВНС на сердце изменяется у здоровых лиц в условиях незначительного эмоционального стресса (устный счет) в два этапа: на первом происходит уменьшение доминирующего тонуса блуждающего нерва, воздействующего на синоатриальный водитель ритма, отражающееся в укорочении интервала R-R; на втором - увеличение симпатической нервной стимуляции миокарда желудочков, приводящее к изменению паттерна реполяризации желудочков и отражающееся в изменениях sT max. Так как в нашем исследовании реакция практически всех лиц выражалась в некотором увеличении ЧСС, но только у 65% из них кроме того имелось уменьшение sTmax, очевидно, что индивидуальный спектр реактивности играет в данном случае некую роль, и, что он может быть правильно оценен лишь с учетом не только вариабельности сердечного ритма, но и параметров реполяризации.

В отличие от ряда других электрокардиологических показателей, индивидуальная вариабельность sT max невелика: ее величина значимо не изменяется при глубоком вдохе [24], и на межиндивидуальную вариабельность не оказывают значимого влияния антропометрические характеристики пациента. Однако, sTmax в среднем ниже у женщин [25]. В обследованной нами группе из 135 здоровых лиц обоего пола в возрасте 10-67 лет не была показана зависимость sTmax от возраста, но была отмечена его положительная корреляция с величиной интервала R-R (r=0.412, p<0.0001); а уравнение линейной регрессии было следующим:

sT max (mV)=30+0.435хR-R (мсек.).

Интересные результаты были обнаружены в недавних исследованиях на молодых мужчинах (n=155, возраст 10-35 лет): у лиц с нормальным АД средние величины sT max выше, чем у лиц, классифицированных как имеющие высокие нормальные значения АД или гипертензию I ст. по классификации JNA VI, хотя они не отличались по значениям sQRSmax.

Угол между векторами QRS и Т

Одним из последствий различия в распространении фронта активации и восстановления желудочков является различие в ориентации векторов QRS и Т. Нормальные значения пространственного угла между «полуплощадью» QRS и максимальным вектором Т при использовании системы отведений SVEC III у 50 здоровых лиц были приведены в работе Болла и Пипбергера (в среднем 56°, стандартное отклонение 18.8, разброс значений 20-105) [27]. Полученные нами значения пространственного угла между интегральными векторами QRS и STT в отведениях системы Франка у 135 здоровых лиц были отчетливо близкими: в среднем 57.5°, стандартное отклонение 29.9, разброс значений 4-143. Известно, что этот угол увеличивается при гипертрофии желудочков и связан с соотношением величины желудочкового градиента и QRS [28]. Было обнаружено, что он также увеличивается в ортостазе, после мышечной нагрузки, и после введения адреналина [29].

Интересной особенностью является увеличение этого угла при глубоком вдохе [30,31,24], что не может быть объяснено только изменением положения сердца. Этот акт (глубокий вдох) приводит к некоторому напряжению систем сердечно-сосудистой регуляции с важным участием ВНС.

Сумма абсолютных величин максимума и минимума поверхностного интегрального QRST

Информацию о свойствах реполяризации желудочков ищут, часто с помощью сложных подходов, путем анализа изоинтегральных контурных карт, полученных путем интегрирования комплексов QRS в каждом отведении на протяжении всего интервала QRST (BSIM) [34, 35]. Были получены некоторые свидетельства того, что и простое измерение амплитуды пик-основание поверхностного интеграла QRST BSIM (AmplBSIM) может использоваться для определения нарушений реполяризации [36, 37]. Следует отметить, что величины экстремумов BSIM тесно связаны с числом используемых электродов; при увеличении числа точек регистрации возрастает возможность попасть в истинный пик распределения. Таким образом, должна соблюдаться осторожность при сравнении результатов, полученных с использованием разного числа электродов.

Корреляция между sTmax, углом QRS-STT и AmplBSIM

1. Структурная и функциональная гетерогенность регуляции сердечной деятельности со стороны ВНС не позволяет охарактеризовать это состояние как «симпатико-парасимпатический» баланс.

2. Вариабельность сердечного ритма и электрокардиологический анализ паттерна реполяризации желудочков способны отразить более физиологически значимую информацию.

3. По-видимому, известные электрокардиологические показатели восстановления потенциала желудочков отражают до некоторой степени разные стороны этого процесса.

1. Katz AM: Physiology of the Heart. Raven Press, New York, 1977, p. 450.

2. Braunwald E, Sonnenblick EH, Ross J. In: Braunwald E, ed: Heart Disease. Saunders, Philadelphia, 1980, 351-392.

3. Lewy MN: Neural control of the heart. J Cardiovasc Electrophysiol 1995; 6:283-293.

4. Takei M, Sasaki Y, Yonezawa T et al. The autonomic control of the transmural dispersion of ventricular repolarization in anesthetized dogs. J Cardiovasc Electrophysiol 1999;10:981-989.

5. Han J, de Jalon PG, Moe GK: Adrenergic effects on ventricular vulnerability. Circulation Res 1964; 14:516-524.

6. Eckberg DL, Nerhed C, Wallin BG: Respiratory modulation of muscle sympathetic and vagal cardiac outflows in man. J Physiol (Lond.) 1985; 365:181-196.

7. Wallin BG, Nerhed C: Relatioship between spontaneous variations of muscle sympathetic nerve activity and succeeding changes of blood pressure in man. J Auton Nerve Syst 1982; 6:293-302.

8. Eckberg DL: Sympathovagal balance. A critical appraisal. Circulation 1997; 96:3224-3232.

9. Kingwell BA, Thompson JM, Kaye DM et al.: Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation 1994; 90:234-240.

10. Pomeranz B, Mackaulay RJB, Caudill MA et al.: Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248:H151-H153.

11. Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL: Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol (Lond) 1994; 474:483-495.

12. Saul JP, Berger RD, Albrecht P et al.: Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 1991; 261:H1231-H1245.

13. Surawicz B: St-T abnormalities. In Macfarlane PW, Veitch Lawrie TD, eds: Comprehensive Electrocardiology, Volume 1. Pergamon Press, New York, 1989, 511-563.

14. Burgess MJ, Millar K, Abildskov JA: Cancellation of electrocardiographic effects during ventricular recovery. J Electrocardiol 1969; 2:101-107.

15. Berman R, Simonson E, Heron W: Electrocardiographic effects associated with hypnotic suggestion in normal and coronary sclerotic individuals. J Appl Physiol 1954; 7:89-92.

16. Mainzer F: L’influence de l’anxiete sur l’electrocardiogramme: Son importance dans l’electrocardiographie pratique. Cardiologie 1958; 32:362-374.

17. Blohmke M, Schaefer H, Stelzer O et al.: Vegetative Tonisierung des Herzens wahrend geistiger Belastung, gemessen am EKG. Int Z angew Physiol einschl Arbeitsphysiol 1967; 24:182-193.

18. Mitchell JH, Shapiro AP: The relationship of adrenalin and T wave changes in the anxiety state. Am Heart J 1954; 48:323-330.

20. Matyas TA, King MG: T-wave amplitude stability during sinus arrhythmia in resting man. Physiology and Behaviour 1976; 16:115-117.

21. Furedy JJ, Helsegrave RJ, Scher H: Psychophysiological and physiological aspects of T-wave amplitude in the objective study of behavior. Pav J Biol Sci 1984;19:182-194.

23. Ruttkay-Nedecky I: Effect of emotional stress on cardiac repolarization vectors. Adv Cardiol 1978; 21:284-285.

24. Ruttkay-Nedecky I, Regecova V: Quantitative description of the cardiac electric field in held deep inspiration. In Liebman J ed: Electrocardiology’96, World Scientific, Singapore etc. 1997, 123-126.

25. Regecova V: Comparative study of the influence of somatometric variables on vectorcardiographic and body surface mapping characteristics. In: Bacharova L, Macfarlane PW eds: Electrocardiology ’97, World Scientific, Singapore, etc., 1998,182-185.

26. Ruttkay-Nedecky I, Andrasyova D, Regecova V: Noninvasive electrocardiologic indicators of ventricular sympathetic drive. Cardiology, in press.

27. Ball MF, Pipberger H: The normal spatial QRS-T angle of the orthogonal vectorcardiogram. Am Heart J 1958; 56:611-615.

28. Mashima S: Theoretical considerations on the electrocardiogram of ventricular hypertrophy. J Electrocardiol 1976; 9:133-138.

29. Jedlicka J: Verkuzung des Ventrikelgradienten in Hyperkinetischen Zustanden. In: Kowarzyk H ed: Probleme der Raumlichen Vektorkardiographie, Publ.House of the Slovak Academy of Sci, Bratislava, 1963, 137-142.

30. Simonson E, Nakagawa K, Schmitt O: Respiratory changes of the spatial vectorcardiogram recorded with different lead systems. Am Heart J 1957; 54:919-939.

31. Ruttkay-Nedecky I: Effects of respiration and heart position on the cardiac electric field. In Nelson CV, Geselowitz DB eds: The Theoretical Basis of Electrocardiology, Clarendon Press, Oxford 1976, 120-134.

32. Andrasyova D, Cizmarova E, Ruttkay-Nedecky I: Factors affecting the spatial angle between integral QRS and T vectors. In Bacharova L, Macfarlane PW eds: Electrocardiology’97, World Scientific, Singapore etc.1998, 279-282.

33. Andrasyova D, Regecova V, Cizmarova E, Ruttkay-Nedecky I: Vectorcardiographic indication of adrenergic tonus in the working myocardium. In Preda I ed: Electrocardiology’98, World Scientific, Singapore etc. 1999, 431-434.

34. Abildskov JA, Evans AK, Lux RL, Burgess MJ: Ventricular recovery properties and QRST deflection area in cardiac electrocardiograms. Am J Physiol 1981; 239:H227-H231.

35. De Ambroggi L: Body surface potential mapping as a tool for detecting arrhythmia vulnerability. In Liebman J ed: Electrocardiology’96. World Scientific, Singapore etc, 1997, 489-495.

36. Stanley ML, Grogin HR, Chin MC et al.: Body surface mapping detects regional sympathetic imbalance in canine ventricular myocardium (abst). J Am Coll Cardiol 1993; 21:53A.

37. Goldner BG, Horwitz L, Quan W et al.: Evaluation of vasovagal syncope with body surface mapping during head-up tilt-table testing. Am J Cardiol 1994; 74:1176-1179.

38. Ruttkay-Nedecky I, Regecova V: Normal variability of the gradient between maximum and minimum of the QRS area distribution. In Preda I ed: Electrocardiology’98. World Scientific, Singapore etc. 1999, 35-38.

Российский Научно-Практический
рецензируемый журнал
ISSN 1561-8641

Для цитирования: Лысенкова Н. О., Румянцев М. И., Кратнов А. Е. Роль вегетативной нервной системы в развитии фатальных нарушений ритма сердца у пациентов с ишемической болезнью сердца // Доктор.Ру. 2016. № 11 (128). С. 33-35.

Цель обзора : рассмотреть вопросы нестабильности миокарда у пациентов, страдающих ишемической болезнью сердца (ИБС).

Основные положения . Эпидемиологические, клинические и морфологические данные убедительно доказывают тесную взаимосвязь развития кардиальной смерти с особенностями вегетативных влияний на деятельность сердца у пациентов с ИБС. У таких больных происходит существенная перестройка автономной нервной системы сердца, это обусловлено анатомическими и функциональными изменениями миокарда.

Заключение . Рассогласования между электрофизиологическими процессами в миокарде, эфферентной импульсацией из центральных структур и состоянием афферентных связей, а также дисфункция самих центральных нервных структур могут служить причиной электрической нестабильности миокарда и способствовать возникновению фатальных нарушений сердечного ритма, приводящих к кардиальной смерти.

Основной причиной и предвестником кардиальной смерти у больных ИБС являются потенциально опасные аритмии, обусловленные электрической нестабильностью сердца, что определяется сложным взаимодействием множества факторов: структурными изменениями в сердце [22], ишемией миокарда [1], дисфункцией ЛЖ, дисбалансом вегетативной нервной регуляции, нейрогуморальными механизмами [16], суточными биоритмами, нарушением процессов реполяризации миокарда [5], генетическими дефектами [32]. Существуют данные, согласно которым нестабильность электрофизиологических процессов в миокарде у пациентов, страдающих ИБС, в первую очередь связана с нарушением регуляции вегетативного и электролитного баланса [6, 7].

Сердце иннервируется вегетативной нервной системой (ВНС), состоящей из симпатических и парасимпатических нервов. Симпатические нервы, стимулируя β-адренорецепторы синусового узла, увеличивают ЧСС. Раздражение блуждающего нерва, в свою очередь, стимулирует М-холинорецепторы синусового узла, вследствие чего развивается брадикардия. Синусовый и атриовентрикулярный узлы находятся в основном под влиянием блуждающего нерва и в меньшей степени симпатического, в то время как желудочки контролируются преимущественно симпатическим нервом [25, 35].

Деятельность ВНС находится под контролем ЦНС и ряда гуморальных влияний. В продолговатом мозге расположен сердечно-сосудистый центр, который объединяет парасимпатический, симпатический и сосудодвигательный центры. Регуляция этих центров осуществляется подкорковыми узлами и корой головного мозга [34]. На ритмическую деятельность сердца влияют импульсы, исходящие из сердечно-аортального, синокаротидного и других сплетений. На сердечно-сосудистый центр также действуют гуморальные нарушения, изменения в крови (парциального давления углекислого газа и кислорода, кислотно-основного состояния), хеморецепторный рефлекс [10].

В состоянии покоя доминирует тонус вагуса, и изменчивость сердечной периодики в значительной степени зависит от его влияний. Вагусная и симпатическая активность постоянно взаимодействуют. Поскольку синусовый узел богат холинэстеразой, действие любого вагусного импульса краткосрочно, так как ацетилхолин быстро гидролизируется. Преобладание парасимпатических влияний над симпатическими может быть объяснено двумя независимыми механизмами: холинергически индуцируемым снижением высвобождения норадреналина в ответ на симпатическую стимуляцию и холинергическим подавлением ответа на адренергический стимул. Афферентная вагусная стимуляция приводит к рефлекторному возбуждению эфферентной вагусной активности и ингибированию эфферентной симпатической активности [35].

Эффекты противоположно ориентированного рефлекса опосредуются стимуляцией афферентной симпатической активности [29]. Эфферентная вагусная активность также находится под тоническим сдерживающим влиянием афферентной кардиальной симпатической активности [15]. Эфферентная симпатическая и вагусная импульсации, направленные на синусовый узел, характеризуются разрядом, преимущественно синхронизированным с каждым сердечным циклом.

РОЛЬ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ В АРИТМОГЕНЕЗЕ

Литературные данные о роли вегетативной регуляции в аритмогенезе неоднозначны. В последнее время активно обсуждается положение о том, что повышение активности симпатического звена ВНС при ишемии миокарда приводит к возникновению нарушений ритма, тогда как активация парасимпатического звена обладает протективным эффектом [33]. Однако при гистологическом исследовании миокарда у пациентов, погибших внезапно, были выявлены нарушение автономной регуляции, обширные очаги истощения катехоламинов в адренергических сплетениях миокарда и изменения вегетативных нервных ганглиев. Показано, что ишемические изменения в области нижней стенки ЛЖ вызывают активацию парасимпатического отдела ВНС, а в передней стенке приводят к повышению тонуса симпатических афферентных нервов [3].

При сердечно-сосудистых заболеваниях, особенно при ИБС, отмечается выраженное ремоделирование миокарда, происходит перестройка ВНС сердца. Это ведет к нарушению как симпатических, так и парасимпатических регуляторных влияний. Особого внимания заслуживают активация симпатоадреналовой системы и снижение активности парасимпатического отдела ВНС, связанные как с развитием общего адаптационного синдрома, так и со значительной структурной перестройкой миокарда, что обусловливает увеличение электрической нестабильности, склонность к возникновению фатальных нарушений сердечного ритма [1, 2, 9, 17]и повышается риск кардиальной смерти.

Известно, что вагусное влияние понижает порог возникновения угрожающих жизни желудочковых аритмий и обеспечивает антиаритмическую защиту, возможно, путем снижения возбудимости кардиомиоцитов, а симпатическое, напротив, повышает этот порог, что приводит к более частым аритмическим осложнениям. Выявлено, что в остром периоде инфаркта миокарда (ИМ) растет тонус симпатической нервной системы и уменьшается тонус парасимпатической. В ряде исследований обнаружено, что снижение вагусной активности или нарушение баланса влияний ВНС на синусовый ритм в пользу симпатического отдела, наблюдаемое уже в ранние сроки обострения ИБС, сопряжено с тяжестью заболевания и сохраняется не менее 6-12 месяцев [11, 14, 26]. Есть основания полагать, что этот дисбаланс связан с повышенным риском развития тяжелых осложнений и смерти: так, существуют свидетельства проаритмического эффекта уменьшения вагусных или повышения симпатических влияний на сердце, а также защитного действия противоположных изменений активности ВНС [9, 23, 27].

Исследования показали, что большинству эпизодов ишемии миокарда (61,8%) предшествовали значимые изменения тонуса ВНС (симпатической — 61,9%, парасимпатической — 38,1%) [4]. Остальные эпизоды (38,2%) возникали на фоне неизмененной активности ВНС. Установлено, что повышение активности симпатической нервной системы статистически значимо уменьшает продолжительность эпизодов безболевой ишемии миокарда и увеличивает длительность приступов спонтанной стенокардии. Органические изменения миокарда, особенно ИМ, оказывают значительное влияние в регуляторные процессы автономной нервной системы вследствие развития вегетативной денервации сердца. Нарушение вегетативной регуляции сердечно-сосудистой системы может быть обусловлено усилением симпато-симпатических [12, 28, 30, 31] и симпато-вагальных рефлексов [35]. Изменение геометрических свойств пораженного миокарда приводит к усилению афферентной симпатической стимуляции вследствие механического раздражения нервных окончаний и к рефлекторному ослаблению парасимпатических воздействий на сердце [28]. Снижается также ответ клеток синусового узла на изменение нейрорегуляторных механизмов [36].

Достаточно хорошо освещен в литературе обсуждаемый в течение длительного времени вклад ВНС в генезис нарушений ритма сердца и внезапной кардиальной смерти у больных ИБС [13]. Известно, что по мере прогрессирования ИБС зоны ишемии, а также фиброза и кардиосклероза становятся более чувствительными к действию катехоламинов и поэтому реагируют на малейшие изменения симпатического тонуса [24]. В последние годы выявлено, что очаговые повреждения нервных волокон в желудочках сердца у больных с перенесенным ИМ могут приводить к нарушению реполяризации и таким образом способствовать электрической нестабильности миокарда [7, 8]. Обнаружено, что при ИМ и нестабильной стенокардии нарушения симпатической иннервации сердца превышают по площади и глубине зоны нарушенной перфузии, что объясняется большей чувствительностью нейрональных окончаний к ишемии. Предполагается, что адренергические влияния на кардиомиоциты у больных с ОКС усиливаются вследствие снижения захвата симпатическими окончаниями сердца поступающего из кровотока норадреналина [7].

Нервная регуляция является одним из наиболее важных механизмов, стабилизирующих электрическую активность сердца. Повреждения внутрисердечных нервных волокон и ганглиев могут лежать в основе серьезных нарушений образования импульсов и процессов реполяризации миокарда, проведения возбуждения. Длительные сравнительные клинические и патологоанатомические наблюдения свидетельствуют о том, что у больных, умерших внезапной кардиальной смертью, нервные волокна часто изменены вблизи проводящей системы сердца [19, 21]. Встречаются также очаговые повреждения нервных волокон в желудочках сердца, которые способны приводить к нарушению реполяризации и электрической нестабильности миокарда.

В литературе описаны связи между нервными волокнами и кардиомиоцитами, особенно расположенными вблизи проводящей системы, где в большом количестве проходят периферические нервы [18, 20, 28]. Не исключено, что поражение нервных сплетений в желудочках сердца, где определяется большое количество симпатических нервов [37], вызывает нарушения реполяризации из-за изменения адренергических нервных влияний. Вблизи синусового узла могут повреждаться как симпатические, так и парасимпатические нервные элементы, и естественно предположить, что поражения нервных волокон разной медиаторной природы будут оказывать противоположное действие.

Эпидемиологические, клинические и морфологические данные убедительно доказывают тесную взаимосвязь развития кардиальной смерти с особенностями вегетативных влияний на деятельность сердца у пациентов с ИБС. Наличие структурной патологии сердца, рассогласование между эфферентной импульсацией из центральных структур, нейрогуморальными механизмами вегетативной активности и состоянием афферентных связей, а также дисфункция центральных нервных структур являются определяющими условиями для развития электрической нестабильности сердца.

Читайте также: