Сосудистая анатомия височной кости

Обновлено: 29.05.2024

Атлас посвящен прикладной анатомии височной кости, изложенной в виде последова­тельной диссекции. Диссекция височной кости в условиях лаборатории необходима при освоении, планировании и проведении хирургических вмешательств на среднем и вну­треннем ухе, доступов к задней черепной ямке, внутреннему слуховому проходу и другим анатомическим структурам.

Подробно описаны соотношения важных анатомических структур, даны пошаговые рекомендации по доступу к среднему уху и его отделам, а также к внутреннему уху. По­казаны хирургические доступы, наиболее часто встречающиеся в практической деятель­ности отохирурга. Приведены методики высокотехнологичных вмешательств: установка активных имплантатов среднего уха, кохлеарная имплантация, дренирование эндолим­фатического мешка. Впервые в отечественной литературе представлено соотношение кар­тины спилов височной кости и срезов компьютерной томографии на том же уровне этой же височной кости. Такой материал полезен специалистам лучевой диагностики, которым для описания рентгенологических изменений часто не хватает клинических данных.

В атласе использованы оригинальные авторские фотографии, тщательно подобран­ные для максимальной наглядности и информативности.

Книга предназначена оториноларингологам, челюстно-лицевым хирургам и нейрохи­рургам, как практикующим, так и тем, кто проводит практические занятия со студентами и слушателями. Атлас незаменим для преподавателей указанных специальностей, а также анатомии и оперативной хирургии, для студентов старших курсов медицинских вузов и слушателей курсов последипломного образования.

Сосудистая анатомия височной кости

Несколько крупных синусов твердой мозговой оболочки тесно связаны с височной костью и составляют основу венозного оттока от головного мозга и свода черепа. Верхний сагиттальный и прямой синусы соединяются в области внутренней затылочной бугристости.

Правый и левый поперечные синусы распространяются за пределы этого соединения. Правый поперечный синус сначала является продолжением верхнего сагиттального синуса, поэтому он обычно имеет больший диаметр, чем левый поперечный синус, который начинается как продолжение прямого синуса. Поперечные синусы лежат сразу книзу от намета мозжечка и идут параллельно ему. Кпереди, верхний каменистый синус присоединяется к поперечному синусу, и это соединение отмечает начало сигмовидного синуса.

Сигмовидный синус сзади ограничивает полость сосцевидного отростка. Однако в особенно хорошо пневматизированных костях дополнительные воздухоносные ячейки могут распространяться кзади от сигмовидного синуса. Сигмовидный синус является наиболее поверхностным (латеральным) в своей верхней части. Твердая мозговая оболочка средней черепной ямки приближается к верхней части сигмовидного синуса в синодуральном углу Чителли. От синодурального угла сигмовидный синус идет вниз и медиально, имея различное взаимное расположение с костным лабиринтом.

В нижней своей части сигмовидный синус расширяется в луковицу яремной вены. Луковица яремной вены заметно варьирует по высоте, расположению, отношению к лабиринту, внутреннему слуховому проходу (ВСП) и барабанной полости. Нижний каменистый синус исходит из медиальной части луковицы и идет в переднемедиальном направлении к кавернозному синусу. Яремная вена покидает череп через яремное отверстие вместе с блуждающим, языкоглоточным и добавочными нервами.

Эмиссарные вены — это пути оттока из венозных синусов твердой мозговой оболочки в поверхностные вены скальпа. Сосцевидная эмиссарная вена, одна из достаточно постоянных эмиссарных вен, находится в месте соединения височной и затылочной костей и часто соединяется с затылочной или заушной венами.

Внутренняя сонная артерия также проходит через височную кость. Место ее входа, наружное сонное отверстие, находится медиальнее шиловидного отростка и кпереди от яремного отверстия. Внутренняя сонная артерия направляется кверху до встречи с плотной костью улитки, где делает поворот на 90° и идет кпереди и книзу.

Канал сонной артерии образует медиальную стенку слуховой трубы; внутренняя сонная артерия может иметь дегисценции и быть подвержена травме в этом месте. В редких случаях внутренняя сонная артерия может вторгаться в барабанную полость.

Анатомия височной кости
Анатомия височной кости
Анатомия синусов твердой мозговой оболочки

Видео анатомии и топографии синусов твердой мозговой оболочки

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

ГБЗУ «Московский научно-практический центр оториноларингологии им. Л.И. Свержевского», Москва

Московский научно-практический центр оториноларингологии Департамента здравоохранения Москвы

Московский научно-практический центр оториноларингологии ДЗ Москвы

Отделение оториноларингологии, отделение компьютерной томографии Научного центра здоровья детей РАМН, Москва

Отделение рентгеновской компьютерной томографии Научного центра здоровья детей РАМН, Москва

ГБУЗ «Научно-исследовательский клинический институт оториноларингологии им. Л.И. Свержевского», Москва, Россия

Научно-исследовательский клинический институт оториноларингологии им. Л.И. Свержевского Департамента здравоохранения Москвы, Москва, Россия, 117152

ГБУЗ города Москвы «Научно-исследовательский клинический институт оториноларингологии имени Л.И. Свержевского» ДЗМ, Москва, Россия

ГБУЗ «Научно-исследовательский клинический институт оториноларингологии им. Л.И. Свержевского» ДЗ Москвы, Москва, Россия, 117152

ФГБОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский Университет), Москва, Россия

Искусственная височная кость

Журнал: Вестник оториноларингологии. 2020;85(3): 95‑99

Представлена технология сборки и основные этапы диссекции на искусственной височной кости. Данный образец искусственной височной кости является отечественным продуктом. Использование данного материала делает возможной отработку основных навыков диссекции, таких как антромастоидотомия, задняя тимпанотомия, декомпрессия лицевого нерва. Искусственная височная кость может быть использована как учебно-методическое пособие для студентов, ординаторов и аспирантов, осваивающих отохирургрические навыки в виде базовых этапов диссекционной работы на сложных структурах височной кости.

Височная кость — парная, одна из самых сложных костей скелета, участвует в образовании основания и боковой стенки свода черепа. В ней располагаются орган слуха и равновесия, внутренняя сонная артерия, часть сигмовидного синуса, преддверно-улитковый и лицевой нервы, узел тройничного нерва, ветви блуждающего и языкоглоточного нерва [1]. Височная кость состоит из 4 частей: каменистой, барабанной, сосцевидной и чешуйчатой. Строение данной анатомической области ряд авторов оценивают как одно из самых сложных среди костей в организме человека [2]. У практикующих оториноларингологов всегда наблюдался интерес к освоению хирургии данной области как одной из самых сложных в оперативной оториноларингологии. В начале 2000-х годов симуляционные тренажеры или искусственные материалы для развития хирургических навыков были полезной, но весьма абстрактной концепцией. Два десятилетия спустя развитие данных технологий открыло новые возможности для совершенствования отохирургов и сокращения времени их обучения.

Современная высшая школа столкнулась с рядом ограничений в использовании традиционного способа обучения «у операционного стола». В то же время появилась возможность использования новых технологий для моделирования хирургической операции. В связи с этим в последнее время в России и за рубежом отмечен повышенный интерес практикующих специалистов к курсам по диссекции височной кости для повышения отохирургических навыков [3]. Применение эндоскопии, а в ряде случаев хирургическое лечение с использованием синергизма оториноларингологов и нейрохирургов требует все более совершенной техники владения диссекцией и понимания взаимного расположения структур пирамиды височной кости [3]. Достижения научно-технического прогресса, появление высококачественной линзованной оптики, новых материалов и протезов позволяют выполнять высокотехнологичные операции на височной кости с минимальным объемом хирургического вмешательства. Освоение различных типов операций требует детального знания данной структуры и понимания пространственного взаиморасположения основных анатомических структур [4]. В основе обучения отохирургов помимо теоретического базиса очень важно приобретение практических навыков [5]. Безусловно, классические курсы по диссекции височной кости человека останутся «золотым стандартом» в подготовке специалистов в области хирургии среднего и внутреннего уха. Совершенствование техники работы бормашиной, понимание анатомических ориентиров по мере выполнения погружения в структуры данной анатомической области, сосудов и нервов, их топологии в сочетании с теоретическим базисом — наиболее верный путь к формированию пространственного мышления отохирурга.

Существующий тренажер WOXELMEN подходит для данной подготовки. Обладая принципом обратной связи, он дает возможность тактильных ощущений, однако не может полностью заменить тактильных ощущений и механических навыков при работе с искусственным или аутопсийным препаратом. На сегодняшний день спектр искусственных материалов столь широк, что включает как современные синтетические композиты, так и полимеры, которые способны смоделировать ощущения, максимально приближенные к тактильным как во время работы на аутопсийном материале, так и при хирургическом вмешательстве [6].

Современные симуляционные технологии в оториноларингологии развиваются, как и в других медицинских специальностях. Сегодня выбор научных продуктов достаточно широк и представлен различными моделями — от самых простых (в виде механических тренажеров, выполненных из различных силиконовых или пластических материалов, с помощью которых осваиваются отдельные практические навыки: удаление инородных тел из слухового прохода, постановка вентиляционной трубки, наложение трахеостомы) до виртуальных симуляторов. Последние обладают принципом обратной связи и возможностью установки для симуляционной операции данных компьютерной томографии (КТ) конкретного пациента. Это позволяет хирургу выполнить планируемое вмешательство заранее, что минимизирует риски интра- и послеоперационных осложнений. Специальные очки, комплектующие такие симуляторы, позволяют получать пространственное изображение [7, 8].

Ряд научных коллективов предложили для отработки навыков хирургии стремени напечатанную на 3D-принтере готовую височную кость с интегрированной в нее оссикулярной цепью. Полученный комплекс слуховых косточек устанавливают в барабанную полость. Такая модель более трудоемкая в изготовлении и производстве, но она дает возможность усовершенствовать диссекционные навыки отохирурга, а также отдельно получить тактильные осушения на самой небольшой структуре оссикулярного сегмента — стремечке [9]. Однако на такой модели достаточно трудно понять особенности и приобрести навыки хирургической техники работы на подножной пластине. Понимание особенностей удаления ее заднего полюса, предотвращение риска погружения частей фрагментированной подножной пластинки, дефицита перилимфы, попадания крови в преддверие возможны только при наблюдении данного этапа операции в отводную трубку операционного микроскопа либо при самостоятельном манипулировании под тщательным наблюдением опытного отохирурга [9].

В других анатомических работах ряд авторов отмечают большую схожесть височной кости человека и свиньи, в частности основных анатомических структур: оссикулярного комплекса, хода лицевого нерва, сигмовидного синуса и твердой мозговой оболочки. Эти данные подтверждены выполнением спиральной КТ [10]. Другой коллектив авторов [11] рекомендует для отработки практических навыков трансканальной эндоскопической хирургии уха использовать височную кость морской свинки. Наибольшую схожесть с височной костью человека имеют структуры среднего уха, окна лабиринта и оссикуллярный комплекс.

Как правило, на обучающих отохирургических циклах в качестве объекта вмешательства используют аутопсийный материал височной кости человека. В связи с появлением новых технологий и отчасти из-за законодательства по изъятию аутопсийного материала возникла острая необходимость создать искусственную височную кость. Данная возможность появилась благодаря современным технологиям, позволяющим осуществить технический процесс изготовления указанного продукта.

Цель исследования — создание прототипа височной кости человека из искусственных материалов для хирургической диссекции.

Данная работа была выполнена в три этапа: 1) проектная часть, 2) изготовление и сборка кости, 3) выполнение базовых этапов диссекционной работы на височной кости.

Проектная часть

Модель предложенной височной кости полностью и в том же масштабе повторяет сложную анатомию височной кости и дает возможность освоить базовые навыки для начинающих отохирургов. Совмещение технологии 3D-печати, литья по выплавляемым моделям и применения материалов, близких по своим физико-механическим свойствам к натуральной височной кости, позволило нам получить данную модель. Для получения компьютерных снимков височной кости мы выбрали пациентов в возрасте от 25 до 50 лет с диагнозом отосклероза, выполнивших данное исследование при подготовке к стапедопластике. Из 50 изученных снимков КТ височной кости были выбраны наиболее показательные с точки зрения нормальной анатомии. При выборе снимков КТ особое внимание было уделено воздушности сосцевидного отростка, четкому ходу канала лицевого нерва, состоянию цепи слуховых косточек, нормальному расположению твердой мозговой оболочки и сигмовидного синуса, синодурального угла.

Изготовление и сборка кости

Височная кость была смоделирована в трех фрагментах таким образом, чтобы плоскости раздела были проведены вдоль хода канала лицевого нерва (рис. 1).

Выполнение базовых этапов диссекционной работы на височной кости

Полученную искусственную височную кость устанавливали в трехточечную систему фиксации (рис. 2).

Рис. 3. Этап хирургической диссекции (антромастоидотомия). Выполнено снятие кортикального слоя и вскрытие антрума. Далее производили истончение задней стенки и выполнение задней тимпанотомии (рис. 4). Рис. 5. Этап хирургической диссекции (декомпрессия лицевого нерва). Лицевой нерв вскрыт по его ходу в сосцевидном отростке до шилососцевидного отверстия. Полимерная нить — имитация лицевого нерва. Особенностью работы с искусственной височной костью является максимальная тактильная приближенность ощущений к работе с аутопсийным материалом.

Оценить выполненную диссекцию с точки зрения рентгеноанатомии симуляционной операции можно с помощью КТ височной кости в двух стандартных проекциях и последующего описания полученных снимков врачами-рентгенологами.

В искусственной левой височной кости на снимках КТ отчетливо определяются все 4 части: каменистая, барабанная, сосцевидная и чешуйчатая (рис. 6).

Размеры, форма и соотношение структур наружного, среднего и внутреннего уха, а также канала внутренней сонной артерии, ямки луковицы яремной вены, ложа сигмовидного синуса и канала лицевого нерва полностью соответствуют анатомии височной кости человека (рис. 7).

Определяются изменения после санирующей операции в виде полости в аттико-антромастоидальной области. Стенки послеоперационной полости ровные. Крыша сохранена, отчетливо визуализируется твердая мозговая оболочка. Стенка мастоидальной части канала лицевого нерва вскрыта, ствол нерва не поврежден (рис. 8).

В заключение следует отметить, что данная модель искусственной височной кости позволяет начинающему отохирургу освоить базисные практические навыки, необходимые для выполнения основных хирургических вмешательств при заболеваниях среднего уха. Учитывая простоту и доступность модели, ее соответствие аутопсийному материалу, можно полагать, что совмещение технологии компьютерного моделирования, печати частей височной кости на 3D-принтере, литья по выплавляемым моделям с последующей сборкой изделия открывает хорошие перспективы в освоении практических навыков для начинающих отохирургов.

Читайте также: