Всасывание макромолекул. Трансцитоз. Эндоцитоз. Экзоцитоз. Всасывание микромолекул энтероцитами. Всасывание витаминов.

Обновлено: 13.05.2024


Цель лекции. Рассмотреть физиологические механизмы всасывания в желудочно­кишечном тракте (ЖКТ).
Основные положения. В литературе данные вопросы освещаются с трех сторон: 1) топография всасывания веществ в различных отделах ЖКТ – желудок, двенадцатиперстная кишка, тощая, подвздошная и толстая кишка; 2) основные функции энтероцитов; 3) основные механизмы всасывания в кишечнике. Рассмотрено 7 основных механизмов всасывания веществ в кишечнике.
Заключение. Из всего ЖКТ тощая и подвздошная кишка характеризуются самым широким спектром всасывания различных соединений. Понимание физиологических механизмов всасывания в тонкой кишке имеет большое значение в практической гастроэнтерологии.


Ключевые слова:
Всасывание, ионы, натрий, нутриенты, желудочно­кишечный тракт, простая диффузия, облегченная диффузия, осмос, фильтрация, околоклеточный транспорт, активный транспорт, сопряженный транспорт, вторично­-энергизованный транспорт, эндоцитоз, трансцитоз, Р­-гликопротеин.

Стенка тонкой кишки, где происходит наиболее интенсивное всасывание основных питательных веществ, или нутриентов, состоит из слизистой оболочки (ворсинки и кишечные железы), подслизистой (где находятся кровеносные и лимфатические сосуды), мышечного слоя (где находятся нервные волокна) и серозной оболочки. Слизистую оболочку образуют ворсинки, покрытые однослойным эпителием с вкраплением бокаловидных клеток; внутри ворсинок проходят лимфатические сосуды, капиллярная сеть, нервные волокна.
Характерная особенность транспорта веществ в эпителии тонкой кишки заключается в том, что он осуществляется через монослой клеток. Всасывающая поверхность такого монослоя существенно увеличена за счет микроворсинок. Энтероциты тонкой кишки, где в основном происходит всасывание питательных веществ (нутриентов), асимметричны, или поляризованы: апикальная и базальная мембраны отличаются друг от друга по проницаемости, набору ферментов, величине разности электрических потенциалов и выполняют неодинаковые транспортные функции.
Ионы попадают в клетки с помощью ионных каналов или специальных молекулярных машин – насосов. Энергия для входа ионов в клетку обычно обеспечивается через плазматическую мембрану электрохимическим градиентом натрия, генерируемым и поддерживаемым благодаря функционированию Na + , K + -АТФазного насоса. Этот насос локализован на базолатеральной мембране, обращенной в кровь (рис. 1).
Энергия, которую можно получить из электрохимического потенциала Na + (разность ионных концентраций + разность электрических потенциалов на мембране) и которая выделяется, когда входящий натрий пересекает плазматическую мембрану, может быть использована другими транспортными системами. Следовательно, Na + , K + -АТФазный насос выполняет две важные функции – откачивает из клеток Na + и генерирует электрохимический градиент, обеспечивающий энергией механизмы входа растворенных веществ.
Термином «всасывание» обозначают совокупность процессов, обеспечивающих перенос веществ из просвета кишки через слой эпителия в кровь и лимфу; секреция – это движение в противоположном направлении.


Всасывание в различных отделах желудочно-кишечного тракта

В желудке всасывается 20% потребленного алкоголя, а также короткоцепочечные жирные кислоты. В двенадцатиперстной кишке – витамины A и B1, железо, кальций, глицерин, жирные кислоты, моноглицериды, аминокислоты, моно- и дисахариды. В тощей кишке – глюкоза, галактоза, аминокислоты и дипептиды, глицерин и жирные кислоты, моно- и диглицериды, медь, цинк, калий, кальций, магний, фосфор, йод, железо, жирорастворимые витамины D, E и K, значительная часть комплекса витаминов В, витамин С и остатки алкоголя. В подвздошной кишке – дисахариды, натрий, калий, хлорид, кальций, магний, фосфор, йод, витамины C, D, E, K, B1, B2, B6, B12 и большая часть воды. В толстой кишке – натрий, калий, вода, газы, некоторые жирные кислоты, образовавшиеся при метаболизме растительных волокон и непереваренного крахмала, витамины, синтезированные бактериями, – биотин (витамин Н) и витамин К.


Основные функции энтероцитов


К основным функциям энтероцитов относят следующие.
Поглощение ионов, включая натрий, кальций, магний и железо, – по механизму их активного транспорта.
Поглощение воды (трансклеточно или околоклеточно), – происходит за счет осмотического градиента, образованного и поддерживаемого ионными насосами, в частности Nа + , К + -АТФазой.
Поглощение сахаров. Ферменты (полисахаридазы и дисахаридазы), локализованные в гликокаликсе, расщепляют большие молекулы сахара на более мелкие, которые затем всасываются. Глюкоза переносится через апикальную мембрану энтероцита с помощью Nа+-зависимого транспортера глюкозы. Глюкоза перемещается через цитозоль (цитоплазму) и выходит из энтероцита через базолатеральную мембрану (в капиллярную систему) с помощью транспортера GLUT-2. Галактоза переносится с помощью такой же транспортной системы. Фруктоза пересекает апикальную мембрану энтероцита, используя транспортер GLUT-5.
Поглощение пептидов и аминокислот. В гли­ко­каликсе ферменты пептидазы расщепляют белки до аминокислот и небольших пептидов. Энтеропептидазы активируют превращение панкреатического трипсиногена в трипсин, который, в свою очередь, активирует другие панкреатические зимогены.
Поглощение липидов. Липиды – триглицериды и фосфолипиды – расщепляются и пассивно диффундируют в энтероциты, а свободные и этерифицированные стерины всасываются в составе смешанных мицелл (см. ниже). Липидные молекулы небольшого размера транспортируются в капилляры кишечника через плотные контакты. Попавшие в энтероцит стерины, включая холестерин, этерифицируются под действием фермента ацил-КоА: холестерин ацилтрансферазы (АХАТ) вместе с ресинтезированными триглицеридами, фосфолипидами и аполипопротеинами включается в состав хиломикронов, которые секретируются в лимфу и затем в кровоток.
. Желчь, попавшая в просвет кишки и не использованная в процессе эмульгации липидов, подвергается обратному всасыванию в подвздошной кишке. Процесс известен как энтерогепатическая циркуляция.
Поглощение витаминов. Для всасывания витаминов используются, как правило, механизмы всасывания других веществ. Особый механизм существует для всасывания витамина В12 (см. ниже).
Секреция иммуноглобулинов. IgA из плазматических клеток слизистой оболочки с помощью механизма рецепторопосредованного эндоцитоза поглощается через базолатеральную поверхность и в виде комплекса рецептор–IgA высвобождается в просвет кишечника. Наличие рецептора придает молекуле дополнительную стабильность.


Основные механизмы всасывания соединений в кишечнике

На рис. 2 представлены основные механизмы всасывания веществ. Рассмотрим указанные механизмы более подробно.
Пресистемный метаболизм, или метаболизм (эффект) первого прохождения кишечной стенки. Явление, при котором концентрация вещества перед попаданием в кровеносное русло резко снижается. При этом если введенное вещество является субстратом P-гликопротеина (см. ниже), его молекулы могут неоднократно поступать в энтероциты и выводиться из него, в результате чего вероятность метаболизма данного соединения в энтероцитах возрастает.
P-гликопротеин в большом количестве экспрессирован в нормальных клетках, выстилающих кишечник, проксимальные канальцы почек, капилляры гематоэнцефалического барьера, и в клетках печени. Транспортеры типа P-гликопротеина являются членами надсемейства самого большого и наиболее древнего семейства транспортеров, представленного в организмах от прокариотов до человека. Это трансмембранные белки, функцией которых является транспорт широкого спектра
веществ через вне- и внутриклеточные мембраны, включая продукты метаболизма, липиды и лекарственные вещества. Такие белки классифицируются как АТФ-связывающие кассетные транспортеры (АВС-транспортеры) на основании их последовательности и устройства АТФ-связывающего домена. АВС-транспортеры влияют на невосприимчивость к лекарственным средствам опухолей, кистозного фиброза, устойчивость бактерий ко многим лекарственным препаратам и некоторые другие явления.
Пассивный перенос веществ через эпителиальный пласт. Пассивный транспорт веществ через монослой энтероцитов протекает без затрат свободной энергии и может осуществляться или трансклеточным, или околоклеточным путем. К этому виду транспорта относятся простая диффузия (рис. 3), осмос (рис. 4) и фильтрация (рис. 5). Движущей силой диффузии молекул растворенного вещества является его концентрационный градиент.
Зависимость скорости диффузии вещества от его концентрации линейна.Диффузия – это наименее специфичный и самый, по-видимому, медленный процесс транспорта. При осмосе, представляющем собой разновидность диффузионного переноса, происходит перемещение в соответствии с концентрационным градиентом свободных (не связанных с веществом) молекул растворителя (воды).
Процесс фильтрации заключается в переносе раствора через пористую К пассивному переносу веществ через мембраны относится также облегченная диффузия – перенос веществ с помощью транспортеров, т. е. специальных каналов или пор (рис. 6). Облеченная диффузия обладает специфичностью к субстрату. Зависимость скорости процесса при достаточно высоких концентрациях переносимого вещества выходит на насыщение, поскольку перенос очередной молекулы тормозится ожиданием, когда транспортер освободится от переноса предыдущей.
Околоклеточный транспорт – это транспорт соединений между клетками через область плотных контактов (рис. 7), он не требует затрат энергии. Структура и проницаемость плотных контактов тонкой кишки в настоящее время активно исследуются и дискутируются. Например, известно, что за селективность плотных контактов для натрия отвечает клаудин-2.
Другая возможность состоит в том, что межклеточный перенос осуществляется благодаря некоторым дефектам в эпителиальном пласте. Такое движение может происходить по межклеточным областям в тех местах, где происходит слущивание отдельных клеток. Эндоцитоз, экзоцитоз, рецепторопосредованный транспорт (рис. 8) и трансцитоз. Эндоцитоз – это везикулярный захват жидкости, макромолекул или небольших частиц в клетку. Существуют три механизма эндоцитоза: пиноцитоз (от греческих слов «пить» и «клетка»), фагоцитоз (от греческих слов «поедать» и «клетка») и рецепторопосредованный эндоцитоз или клатрин-зависимый эндоцитоз. Нарушения указанного механизма приводят к развитию определенных заболеваний. Многие кишечные токсины, в частности холерный, попадают в энтероциты именно по этому механизму.
При пиноцитозе гибкая плазматическая мембрана образует впячивание (инвагинация) в виде ямки. Такая ямка заполняется жидкостью из внешней среды. Затем она отшнуровывается от мембраны и в виде везикулы продвигается в цитоплазму, где ее мембранные стенки перевариваются, а содержимое высвобождается. Благодаря такому процессу клетки могут поглощать как крупные молекулы, так и различные ионы, не способные проникнуть через мембрану самостоятельно. Пиноцитоз часто наблюдается в клетках, функция которых связана со всасыванием. Это чрезвычайно интенсивный процесс: в некоторых клетках 100% плазматической мембраны поглощается и восстанавливается всего за час.
При фагоцитозе (явление открыто русским ученым И.И. Мечниковым в 1882 г.) выросты цитоплазмы захватывают капельки жидкости, содержащие какие-либо плотные (живые или неживые) частицы (до 0,5 мкм), и втягивают их в толщу цитоплазмы, где гидролизующие ферменты переваривают поглощенный материал, разрушая его до таких фрагментов, которые могут быть усвоены клеткой. Фагоцитоз осуществляется с помощью клатрин-независимого актин-зависимого механизма; это – основной механизм защиты организма хозяина от микроорганизмов. Фагоцитоз поврежденных или постаревших клеток необходим для обновления тканей и заживления ран.
При рецепторопосредованном эндоцитозе (см. рис. 8) для переноса молекул используются специфические поверхностные рецепторы. Этот механизм обладает следующими свойствами – специфичность, способность к концентрированию лиганда на поверхности клетки, рефрактерность. Если специфический рецептор после связывания лиганда и его поглощения не возвращается на мембрану, клетка становится рефрактерной к данному лиганду.
12, ферритина и гемоглобина, так и низкомолекулярные – кальций, железо и др. Роль эндоцитоза особенно велика в раннем постнатальном периоде. У взрослого человека пиноцитозный тип всасывания существенного значения в обеспечении организма питательными веществами, по-видимому, не имеет.
Трансцитоз – это механизм, посредством которого молекулы, пришедшие в клетку извне, могут доставляться к различным компартментам внутри клетки или даже перемещаться от одного слоя клеток к другому. Одним из хорошо изученных примеров трансцитоза является проникновение некоторых материнских иммуноглобулинов через клетки кишечного эпителия новорожденного. Материнские антитела с молоком попадают в организм ребенка. Антитела, связанные с соответствующими рецепторами, сортируются в ранние эндосомы клеток пищеварительного тракта, затем с помощью других пузырьков проходят сквозь эпителиальную клетку и сливаются с плазматической мембраной на базолатеральной поверхности. Здесь лиганды освобождаются от рецепторов. Затем иммуноглобулины собираются в лимфатические сосуды и попадают в кровоток новорожденного.
Рассмотрение механизмов всасывания с точки зрения отдельных групп веществ и соединений будут представлены в одном из следующих номеров журнала.

Работа поддержана грантом РФФИ 09-04-01698

Список литературы:
1. Метельский С.Т. Транспортные процессы и мембранное пищеварение в слизистой оболочке тонкой кишки. Электрофизиологическая модель. – М.: Анахарсис, 2007. – 272 с.
2. Общий курс физиологии человека и животных. – Кн. 2. Физиология висцеральных систем / Под ред. А.Д. Ноздрачева. – М.: Высшая школа, 1991. – С. 356–404.
3. Membrane digestion. New facts and concepts / Ed. A.M. Ugolev. – M.: MIR Publishers, 1989. – 288 p.
4. Tansey T., Christie D.A., Tansey E.M. Intestinal absorption. – London: Wellcome Trust, 2000. – 81 p

статья взята с сайта Русского журнала Гастроэнтерологии, Гепатологии, Колопроктологии

Всасывание

Всасывание — процесс транспорта компонентов пищи из полости пищеварительного тракта во внутреннюю среду, кровь и лимфу организма. Всосавшиеся вещества разносятся по организму и включаются в обмен веществ тканей. В полости рта химическая обработка пищи сводится к частичному гидролизу углеводов амилазой слюны, при котором крахмал расщепляется на дек­стрины, мальтоолигосахариды и мальтозу. Кроме того, время пре­бывания пищи в полости рта незначительно, поэтому всасывания здесь практически не происходит. Однако известно, что некоторые фармакологические вещества всасываются быстро, и это находит применение как способ введения лекарственных веществ.

В желудке всасывается небольшое количество аминокислот, глюкозы, несколько больше воды и растворенных в ней минеральных солей, значительно всасывание растворов алкоголя. Всасывание питательных веществ, воды, электролитов осу­ществляется в основном в тонкой кишке и сопряжено с гидроли­зом питательных веществ. Всасывание зависит от величины по­верхности, на которой оно осуществляется. Особенно велика по­верхность всасывания в тонкой кишке. У человека поверхность слизистой оболочки тонкой кишки увеличена в 300—500 раз за счет складок, ворсинок и микроворсинок. На 1 мм* слизистой обо­лочки кишки приходится 30—40 ворсинок, а каждый энтероцит имеет 1700—4000 микроворсинок. На 1 мм поверхности кишечного эпителия приходится 50-100 млн микроворсинок.

У взрослого человека число всасывающих кишечных клеток составляет 10'°, а соматических клеток — 10'°. Из этого следует, что одна кишечная клетка обеспечивает питательными веществами около 100 000 других клеток организма человека. Это предполагает высокую активность энтероцитов в гидролизе и всасывании пита­тельных веществ. Микроворсинки покрыты слоем гликокаликса,образующего из мукополисахаридных нитей на апикальной поверхности слой толщиной до 0,1 мкм. Нити связаны между собой кальциевыми мостиками,что обуславливает формирование особой сети. Она обладает свойствами молекулярного сита, разделющего молекулы по их величине и заряду. Сеть имеет отрицательный заряд и гидрофильна, что придает направленный и селективный характер транспорту через нее низкомолекулярных веществ к мембране микроворсинок, препятствует транспорту через нее высокомолекулярных веществ и ксенобиотиков. Гликокаликс удерживает на поверхности эпителия кишечную слизь, которая вместе с гликокаликсом адсорбирует из полости кишки гидролитические ферменты, продолжающие полостной гидролиз питательных веществ, продукты которого переводятся на мембранные системы микроворсинок. На них завершается гидролиз питательных веществ по типу мембранного пищеварения с помощью кишечных ферментов с образованием в основном мономеров, которые всасываются.

Всасывание различных веществ осуществляется разными механизмами.

Всасывание макромолекул и их агрегатов происходит путем фагоцитоза и пиноцитоза. Эти механизмы относятся к эндоцитозу. С эндоцитозом связано внутриклеточное пищеварение, однако ряд веществ, попав в клетку путем эндоцитоза, транспортируется в везикуле через клетку и выделяется из нее путем экзоцитоза в межклеточное пространство. Такой транспорт веществ назван трансцитозом. Он, видимо, из-за небольшого объема не имеет существенного значения во всасывании питательных веществ, но важен в переносе иммуноглобулинов, витаминов, ферментов и т. д. из кишечника в кровь. У новорожденных трансцитоз важен в транспорте белков грудного молока.

Некоторое количество веществ может транспортироваться по межклеточным пространствам. Такой транспорт называется персорбцией. С помощью персорбции переносятся часть воды и электролитов, а также другие вещества, в том числе белки (антитела, аллергены, ферменты и т. п.) и даже бактерии.

В процессе всасывания микромолекул — основных продуктов гидролиза питательных веществ в пищеварительном тракте, а также электролитов участвует три вида транспортных механизмов: пассивный транспорт, облегченная диффузия и активный транспорт. Пассивный транспорт включает в себя диффузию, осмос и фильтрацию. Облегченная диффузия осуществляется с помощью особых мембранных переносчиков и не требует затраты энергии. Активный транспорт — перенос веществ через мембраны против электрохимического или концентрационного градиента с затратой энергии и при участии специальных транспортных систем (мембранные транспортные каналы, мобильные переносчики, конформационные переносчики). Мембраны имеют транспортеры многих типов. Эти молекулярные устройства переносят один или несколько типов веществ. Часто транспорт одного вещества сопряжен с движением другого вещества, перемещение которого по градиенту концентрации служит источником энергии для сопрягаемого транспорта. Чаще всего в такой роли используется электрохимический градиент Na+. Натрийзависимым процессом в тонкой кишке является всасывание глюкозы, галактозы, свободных аминокислот, дипептидов и трипептидов, солей желчных кислот, били­рубина и ряда других веществ. Натрийзависимый транспорт осу­ществляется и через специальные каналы, и посредством мобиль­ных переносчиков. Натрийзависимые транспортеры расположены на апикальных мембранах, а натриевые насосы — на базолатеральных мембранах энтероцитов. В тонкой кишке существует и натрий-независимый транспорт многих мономеров пищевых веществ. Транспортные механизмы клеток связаны с деятельностью ионных насосов, которые используют энергию АТФ с помощью Na+, К+-АТФазы. Она обеспечивает градиент концентраций натрия и калия между вне- и внутриклеточной жидкостями и, следователь­но, участвует в обеспечении энергией натрийзависимого транспор­та (и мембранных потенциалов). Na+, К+-АТФаза локализована в базолатеральной мембране. Последующее откачивание ионов Na+ из клеток через базолатеральную мембрану (что создает гра­диент концентрации натрия на апикальной мембране) связано с затратой энергии и участием Na+, К+-АТФаз этих мембран. Тран­спорт мономеров (аминокислот и глюкозы), образовавшихся в результате мембранного гидролиза димеров на апикальной мем­бране кишечных эпителиоцитов, не требует участия ионов Na+ и обеспечивается энергией ферментно-транспортного комплекса. Мономер передается с фермента этого комплекса в транспортную систему без предварительного перевода в премембранную вод­ную фазу.

Скорость всасывания зависит от свойств кишечного содержи­мого. Так, при прочих равных условиях всасывание идет быстрее при нейтральной реакции этого содержимого, чем при кислой и щелочной; из изотонической среды всасывание электролитов и пи­тательных веществ происходит быстрее, чем из гипо- и гипертони­ческой среды. Активное создание в пристеночной зоне тонкой кишки с помощью двустороннего транспорта веществ слоя с отно­сительно постоянными физико-химическими свойствами является оптимальным для сопряженного гидролиза и всасывания питатель­ных веществ.

Повышение внутрикишечного давления увеличивает скорость всасывания из тонкой кишки раствора поваренной соли. Это ука­зывает на значение фильтрации во всасывании и роль кишечной моторики в этом процессе. Моторика тонкой кишки обеспечивает перемешивание пристеночного слоя химуса, что важно для гидро­лиза и всасывания его продуктов. Доказано преимущественное всасывание разных веществ в различных отделах тонкой кишки. Допускается возможность специализации разных групп энтеро­цитов на преимущественной резорбции тех или иных пищевых веществ.

Большое значение для всасывания имеют движения ворсинок слизистой оболочки тонкой кишки и микроворсинок энтероцитов. Сокращениями ворсинок лимфа с всосавшимися в нее веществами выдавливается из сжимающейся полости лимфатических .сосудов. Наличие в них клапанов препятствует возврату лимфы в сосуд при последующем расслаблении ворсинки и создает присасываю­щее действие центрального лимфатического сосуда. Сокращения микроворсинок усиливают эндоцитоз и, возможно, являются одним из его механизмов.

Натощак ворсинки сокращаются редко и слабо, при наличии в кишке химуса сокращения ворсинок усилены и учащены (до 6 в 1 мин у собаки). Механические раздражения основания ворси­нок вызывают усиление их сокращений, тот же эффект наблюдает­ся под влиянием химических компонентов пищи, особенно продук­тов ее гидролиза (пептиды, некоторые аминокислоты, глюкоза и экстрактивные вещества пищи). В реализации этих воздействий определенная роль отводится интрамуральной нервной системе (подслизистое, или мейснеровское, сплетение).

Кровь сытых животных, перелитая голодным, вызывает у них усиление движения ворсинок. Считают, что при действии кислого желудочного содержимого на тонкую кишку в ней образуется гор­мон вилликинин, который через кровоток стимулирует движения ворсинок. В очищенном виде вилликинин не выделен. Скорость всасывания из тонкой кишки в большой мере зависит от уровня ее кровоснабжения. В свою очередь оно увеличивается при наличии в тонкой кишке продуктов, подлежащих всасыванию.

Всасывание питательных веществ в толстой кишке незначи­тельно, так как при нормальном пищеварении большая часть их уже всосалась в тонкой кишке. В толстой кишке всасывается боль­шое количество воды, в небольшом количестве могут всасываться глюкоза, аминокислоты и некоторые другие вещества. На этом основано применение так называемых питательных клизм, т. е. введение легкоусвояемых питательных веществ в прямую кишку.

Всасывание макромолекул.

Различные вещества всасываются посредством разных механизмов. Транспорт макромолекул и их агрегатов осуществляется путем фагоцитоза и пиноцитоза. Эти механизмы объединены под названием эндоцитоза. С эндоцитозом связано внутриклеточное пищеварение. Ряд веществ попа­дает в клетку путем эндоцитоза, транспортируется в везикуле через клетку и выделяется из нее в межклеточное пространство путем экзоцитоза. Такой транспорт веществ назван трансцитозом. Он не имеет существенного зна­чения во всасывании нутриентов, но важен в переносе веществ иммунной защиты, витаминов и ферментов из кишечника в кровь. У новорожденных детей трансцитоз важен для транспорта многофункциональных белков материнского молока.

Некоторое количество веществ может транспортироваться по межкле­точным пространствам. Такой транспорт называется персорбцией. Посред­ством персорбции переносится некоторое количество воды и электролитов и меньшее количество других веществ, в том числе белков (антител, аллер­генов, ферментов и др.) и даже бактерий.

Всасывание микромолекул.

Всасывание микромолекул - основных продуктов гидролиза питатель­ных веществ в желудочно-кишечном тракте, а также электролитов осущест­вляется тремя видами транспорта: пассивным, облегченной диффузией и активным. Пассивный транспорт включает в себя диффузию, осмос и фильтрацию. Движущей силой диффузии является концентрационный градиент частиц растворенного вещества. Разновидностью диффузии является осмос, при котором перемещение происходит в соответствии с концентрационным градиентом растворителя. Под фильтрацией понимают процесс переноса раствора через пористую мембрану под действием гидростатического давления.

Облегченная диффузия, как и простая диффузия, осуществляется без затраты энергии по градиенту концентрации, но с помощью особых мембранных переносчиков. Активный транс­порт - перенос веществ через мембраны против электрохимического или концентрационного градиента с затратой энергии и при участии специаль­ных транспортных систем: мембранных транспортных каналов, мобильных переносчиков, конформационных переносчиков.

Эти механизмы переносят один или несколько, но ограниченное число типов веществ. Часто транспорт веществ сопряжен с перемещением друго­го вещества, движение которого по градиенту концентрации служит источ­ником энергии для сопрягаемого транспорта. В такой роли используются ионные градиенты, особенно градиент Na+.

В тонкой кишке Na+-зависимым являет­ся всасывание глюкозы, галактозы, свободных аминокислот, дипептидов и трипептидов, солей желчных кислот, билирубина и ряда других веществ. Na+-зависимый транспорт осуществляется также через специальные кана­лы и мобильными переносчиками. Распространены Nа+-зависимые пере­носчики на апикальных мембранах, а Na+ -насосы - на базолатеральных мембранах энтероцитов.

В тонкой кишке существует и Na+ -не­зависимый транспорт многих мономеров нутриентов.

Градиент Na+ и К+ между вне- и внутриклеточными жидкостям обеспечивается путем активного транспорта. Переносчики в клетках связаны с деятельностью ионных насосов, которые используют энергию АТФ с помощью несколь­ких транспортных АТФаз. Наиболее важной в процессах всасывания явля­ется Na+,K+-АТФаза. Она обеспечивает и, следовательно, участвует в обеспечении энергией Nа+-зависимого транспорта.

Роль моторики кишечника во всасывании. Моторика тонкой кишки обеспечивает не только внутрикишечное давление, но и периодическую смену пристеночного слоя химуса, что важно для гидролиза и всасывания его продуктов.

Скорость всасывания из тонкой кишки в большой мере зависит от уровня ее кровоснабжения. В свою очередь оно увеличивается при наличии в тонкой кишке продуктов, подлежащих всасыванию.

Сокращение ворсинок и микроворсинок. Большое значение для всасыва­ния имеют движения ворсинок слизистой оболочки тонкой кишки и мик­роворсинок энтероцитов, имеющих специальные сократительные элемен­ты. Сокращения ворсинок выдавливают из сжимающейся полости лимфатических сосудов лимфу с всосавшимися в нее веществами. Наличие клапа­нов препятствует возврату лимфы в сосуд при последующем расслаблении ворсинки и обеспечивает присасывающее действие центрального лимфати­ческого сосуда. Сокращения микроворсинок усиливают эндоцитоз и, воз­можно, являются одним из его механизмов.

Натощак ворсинки сокращаются редко и слабо, при наличии в кишке химуса сокращения ворсинок усиливаются и учащаются.

Механическое раздражение основания ворсинок в эксперименте уси­ливает их сокращения, тот же эффект наблюдается под влиянием химичес­ких компонентов пищи, особенно продуктов ее гидролиза - пептидов, некоторых аминокислот, глюкозы, а также экстрактивных веществ пищи. В реализации этих воздействий определенная роль отводится метасимпати­ческой нервной системе.

Установлено, что кровь сытых животных, перелитая голодным, вызы­вает у них усиление движения ворсинок.

Всасывание макромолекул. Трансцитоз. Эндоцитоз. Экзоцитоз. Всасывание микромолекул энтероцитами. Всасывание витаминов.

Ткани и органы. Пищеварение

267

В пищеварительном тракте питательные вещества с помощью ферментов гидролитически расщепляются на фрагменты, которые затем всасываются в первую очередь в тонком кишечнике. Непосредственно в желудке всасывается только этиловый спирт и короткоцепочечные жирные кислоты.

Процесс всасывания облегчается благодаря большой внутренней поверхности кишечника, покрытой эпителием щеточной каймы. Липофильные молекулы проникают через плазматическую мембрану путем простой диффузии, а полярные молекулы — с помощью транспортных систем (облегченная диффузия; см. рис. 221). Во многих случаям происходит также совместный с ионами Na + транспорт, опосредованный переносчиками. При этом движущей силой импорта питательных веществ против градиента концентрации (вторичный активный транспорт; см. рис. 221) является градиент концентраций ионов Na + (высокая концентрация в просвете кишечника и низкая в клетках слизистой). Нарушение систем транспорта может быть причиной заболеваний.

При гидролизе полимерных углеводов образуются олигосахариды, расщепляемые затем гликозидазами (дисахаридазами, олигосахаридазами), находящимися на внешней поверхности клеток щеточной каймы. Образующиеся моносахариды проникают в клетки эпителия кишечника с помощью различных сахарспецифичных транспортных систем. Вторичный активный транспорт обнаружен для глюкозы и галактозы . Эти сахара переносятся в клетку против градиента концентрации. При следующем переносе они поступают в кровеносную систему. Фруктоза переносится с помощью транспортной систему другого типа путем облегченной диффузии.

Аминокислоты (без иллюстрации)

Деградация белка катализируется протеиназами: в желудке — пепсинами, а в тонком кишечнике — трипсином, химотрипсином и эластазой. Образующиеся при этом пептиды далее гидролизуются различными пептидазами до аминокислот. Каждая группа аминокислот переносится в эпителиальные клетки с помощью группоспецифических транспортных систем, использующих совместный транспорт с ионами Na + (вторичный активный транспорт) или Na + -независимую облегченную диффузию. С помощью этих процессов могут переноситься и небольшие пептиды.

Жиры и другие липиды плохо растворимы в воде (см. с. 53). Они атакуются ферментами только на границе фаз между водой и липидом. Чем больше эта поверхность, т. е чем лучше эмульгированы жиры, тем легче гидролизуются липиды. Относительно хорошо эмульгирован жир молока. Переваривание жиров начинается уже в желудке благодаря наличию небольших количеств липаз слюны и желудочного сока. Трудноусвояемые липиды, например из блюд, приготовленных из свинины, эмульгируются только в тонком кишечнике с помощью солей желчных кислот и фосфолипидов желчи и атакуются липазами поджелудочной железы.

Жиры (триацилглицерины) расщепляются панкреатической липазой прежде всего в положениях 1 и 3 глицерина. При этом освобождаются два остатка жирной кислоты, так что главными продуктами гидролиза являются жирные кислоты и 2-моноацилглицерин . Небольшое количество глицерина образуется также в результате полного гидролиза. Эти продукты расщепления всасываются кишечником путем пассивной диффузии.

В клетках слизистой длинноцепочечные жирные кислоты активируются коферментом А и используются для ресинтеза триацилглицеринов (жиров). Последние поступают в лимфу в виде хиломикронов и в обход печени через грудной проток попадают в кровь. По этому пути переносится также холестерин (см. с. 63).

Короткоцепочечные жирные кислоты (с длиной цепи менее 12 атомов углерода) поступают непосредственно в кровь и попадают в печень через воротную вену. Этим путем переносится также глицерин.

Презентация и тех.карта по теме : Везикулярный транспорт веществ через мембрану

Везикулярный перенос веществ через биологические мембраны Автор: Зайцева Н.В.

Процесс фагоцитоза (от греч. «фагос» — пожирать и «цитос» — клетка) связан с активной деятельностью и подвижностью цитоплаз­матической мембраны. Оно представляет активное поглощение клет­кой относительно крупных твердых частиц. Фагоцитоз широко распространен в природе и встречается на всех ступенях развития животного мира, начиная с простейших
Впервые поглощение капель жидкости клетками наблюдал Люис в 1931 г. при изуче­нии роста макрофагов и фибробластов в культуре тканей. Процесс захватывания и поглощения капелек жидкости на­поминает питье: клетки как бы пьют окружающую их жидкость, и поэтому обнаруженное Люисом явление было названо пиноцитозом (от греч. «пинос» — пить и «цитос» — клетка). Большинство эукариотических клеток непрерывно поглощают жидкости и растворенные в них вещества путем пиноцитоза.

Экзоцитоз — процесс, обратный эндоцитозу; из клеток выводятся непереваривши.

Экзоцитоз — процесс, обратный эндоцитозу;
из клеток выводятся непереварившиеся остатки
твёрдых частиц и жидкий секрет.

Рецепторно-опосредованный эндоцитоз Рецепторы ко многим веществам, расположен.

Рецепторно-опосредованный эндоцитоз
Рецепторы ко многим веществам, расположены на клеточной поверхности.
Эти рецепторы связываются с лигандами (молекулами поглощаемого вещества с высоким сродством к рецептору).
Рецепторы, перемещаясь, могут скапливаться в особых областях, называемых окаймленными ямками. Вокруг таких ямок и образующихся из них окаймленных пузырьков образуется сетевидная оболочка, состоящая из нескольких полипептидов, главный из которых белок клатрин.
Окаймленные эндоцитозные пузырьки переносят комплекс рецептор-лиганд внутрь клетки. В дальнейшем, после поглощения веществ, комплекс рецептор-лиганд расщепляется, и рецепторы возвращаются в плазмолемму.
С помощью окаймленных пузырьков транспортируются иммуноглобулины, факторы роста, липопротеины низкой плотности (ЛНП).


Трансцитоз – это процесс, объединяющий эндоцитоз и экзоцитоз.

Трансцитоз – это процесс, объединяющий эндоцитоз и экзоцитоз.
На одной поверхности клетки формируется эндоцитозный пузырёк, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство.
Такой процесс характерен для клеток, выстилающих кровеносные сосуды, - эндотелиоцитов, особенно в капиллярах.


Оформить свои записи (определения, схематичные рисунки). Повторить весь пройд.

Оформить свои записи (определения, схематичные рисунки).
Повторить весь пройденный материал по разделу: транспорт веществ через клеточную мембрану, подготовить все рисунки, схемы на проверку.
Подготовиться к итоговой проверочной работе.


Спасибо за работу на уроке!

Спасибо за работу на уроке!

Выбранный для просмотра документ Урок 3. Везикулярный транспорт.docx

Технологическая карта урока

Автор: Зайцева Н.В. учитель биологии, МАОУ лицей 100.

Тема: Везикулярный перенос веществ через биологические мембраны.

Класс: 10 класс

Тип урока: комбинированный.

Цель: разобрать механизм везикулярного переноса веществ через мембрану.

Образовательные:

1) рассмотреть процесс эндоцитоз, включающий в себя фагоцитоз и пиноцитоз;

2) рассмотреть процесс экзоцитоз

3) рассмотреть процесс трансцитоз;

4) выяснить роль этих процессов для организмов.

Развивающие:

1) совершенствовать умения умение выделять существенное в изучаемом материале;

2) продолжить формирование умений анализировать, сравнивать, обобщать; работать с текстом;

3) развивать самостоятельность;

Воспитательные:

1) воспитание толерантности, взаимопомощи и сотрудничества;

2) воспитывать уважение друг к другу, чувство ответственности за свои поступки, слова;

Основные термины и понятия: везикулярный транспорт, везикула, эндоцитоз, фагоцитоз, пиноцитоз, экзоцитоз, трансцитоз.

Методы обучения: словесные (беседа, объяснение), наглядные: работа с иллюстративным материалом по везикулярному транспорту, частично-поисковые, проблемные, работа с текстом презентации, раздаточным материалом.

Формы обучения: фронтальная, индивидуальная.

Оборудование: ИКТ презентация «Везикулярный транспорт веществ через биологическую мембрану»; видео-маткриал процессов везикулярного транспорта.

Источники, используемые при подготовке к уроку:

1. Дымшиц Г.М., Шумный В.К. Биология 10-11 класс. Общая биология, профильный уровень, часть 1. Изд-во. «Просвещение»; 2012г.-303с.

2. Брагина Н.А. Мирона Ф.А. Мембранология. Изд-во: МИТХТ им. М.В. Ломоносова, 2002г.-98с.

3. Огурцов А.Н. Биологические мембраны. Изд-во: ХПИ, 2012г.-368с.

4. Заир-Бек С.И., Муштавинская И.В. Развитие критического мышления на уроке. Изд-во: «Просвещение». 2011г. — 223с.

План урока:

1. Организационный этап (1 мин).

2. Проверка домашнего задания (10 мин.)

3. Актуализация знаний (2 мин).

4. Изучение нового материала (15 мин).

5. Закрепление полученных знаний ( 8 мин).

6. Информация о домашнем задании, инструктаж по его выполнению (2 мин).

7. Рефлексия ( 2 мин).

Деятельность учителя

Деятельность

Результаты этапа

Приветствует обучающихся, проверяет их готовность к уроку.

-учащиеся встают, приветствуя учителя, готовятся к уроку

Регулятивные: способность регулировать свои действия;

Коммуникативные: планирование учебного сотрудничества с учителем и одноклассниками.

2. Проверка домашнего задания

1. Объяснить механизм работы натрий-калиевого насоса.

2. Различия первично-активного транспорта от вторично-активного транспорта.

3. Выступление докладчиков.

-учащиеся выполняют задание

-докладывают свою тему

Личностные: проявление интереса и активности в выборе решения.

Познавательные: поиск и выделение необходимой информации, осознанное высказывание. Формирование мыслительных операций.

Коммуникативные: умение с достаточной полнотой и точностью выражать свои мысли, умение строить речевое высказывание в соответствии с поставленными задачами;

Регулятивные: самоопределение, прогнозирование результата, осознание того, что уже усвоено и что еще подлежит усвоению, оценивание качества и уровня усвоения.

2. Актуализация знаний

Дорогие мои ребята, вот и подходит заключительная тема в нашем раздела транспорта веществ через биологические мембраны.

Везикулярный транспорт подчиняется общим принципам организации во всех клетках, начиная от культуры клеток дрожжей и заканчивая клетками организма человека, и играет важную роль в целом спектре физиологических процессов, от процессов питания клеткой до поддержания иммунитета и полноценной работы организма.

Познавательные : структурирование знаний, самостоятельное создание алгоритмов деятельности при решении поставленной проблем

3. Изучение нового материла

Макромолекулы такие как белки, нуклеиновые кислоты, полисахариды, липопротеидные комплексы и другие сквозь клеточные мембраны не проходят, в противовес тому как транспортируются ионы и мономеры. Транспорт микромолекул, их комплексов, частиц внутрь клетки и из нее происходит совершенно иным путем - посредством везикулярного переноса.

Может кто-то знает как осушествляется такой тип переноса веществ? Что такое везикула? Как вы понимаете?

В клетку же или из одного мембранного компартмента в другой макромолекулы попадают заключенными внутри вакуолей или везикул. Везикула – дословно переводится как упакованный мешочек. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта — эндоцитоз и экзоцитоз.

При эндоцитозе клеточная мембрана образует впячивания, или выросты, внутрь клетки, которые, отшнуровываясь, превращаются в пузырьки. Последние затем обычно сливаются с первичными лизосомами, образуя вторичные лизосомы, в которых содержимое подвергается гидролизу - внутриклеточному перевариванию. Продукты гидролиза используются клеткой.

Различают 3 типа процесса эндоцитоза:

3) рецепторно-опосредованный эндоцитоз


Большинство эндоцитозных пузырьков в конце концов сливается с первичными лизосомами. При этом образуются вторичные лизосомы, в которых переваривается большая часть макромолекулярного содержимого пузырьков. После этого основная часть мембранных компонентов пузырьков каким-то образом возвращается в плазматическую мембрану.

Большинство животных клеток непрерывно осуществляют эндоцитоз фрагментов своей плазматической мембраны. Таким путем поглощается также внеклеточная жидкость и растворенные в ней вещества.

Фагоцитоз у простейших организмов представляет собой форму питания, у млекопитающих большинство клеток не способно эффективно поглощать крупные частицы. Эту роль у млекопитающих выполняют 2 класса лейкоцитов – макрофаги и полиморфноядерные лейкоциты, защищая организм от вторгшихся микроорганизмов. Макрофаги также утилизируют старые или поврежденные клетки и клеточные обломки.

Экзоцитоз представляет собой механизм секреции макромолекул из клетки во внешнюю среду. При переносе макромолекул во внешнюю среду происходит последовательное образование и слияние окруженных мембраной пузырьков (везикул) с плазмалеммой. Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются белки. образовавшиеся в рибосомах эндоплазматического ретикулума. Низкомолекулярные вещества (медиаторы, некоторые гормоны) попадают в везикулы преимущественно с помощью вторичного транспорта. Пузырьки транспортируются посредством сократительного аппарата клетки, состоящего из нитей актина и миозина и микротрубочек, к клеточной мембране, сливаются с ней, а содержимое клетки выделяется во внеклеточную среду. Энергия АТФ расходуется на деятельность сократительного аппарата клетки. Процесс слияния везикул с клеточной мембраной активируется фосфолипидом, лизолецитином и уровнем внутриклеточных ионов кальция.

ФАКТ! В процессе взаимодействия эндо- и экзоцитоза происходит самообновление клеточной мембраны (кругооборот, рециркуляция): в течение каждого часа в процессе эндоцитоза в разных клетках используется от 3 до 100% клеточной оболочки, но с такой же скоростью происходит ее возобновление в результате экзоцитоза.

Например, для секреции инсулина клетки упаковывают его во внутриклеточные пузырьки, которые сливаются с плазматической мембраной и открываются во внешнеклеточное пространство, высвобождая при этом молекулы инсулина.

Важная особенность как экзоцитоза, так и эндоцитоза состоит в том,что секретируемые или поглощаемые макромолекулы локализуются в мембранных пузырьках и не смешиваются с другими макромолекулами или органеллами клетки. С помощью неизвестного механизма каждый пузырек сливается только со специфическими мембранными структура-

ми, что гарантирует правильный перенос макромолекул.

Некоторые клетки, захватывая вещества путем эндоцитоза, пе­реносят их в эндосомах без трансформации в цитоплазме или с небольшой модификацией к другой стороне (части) клетки. Там эндосома сливается с плазмалеммой и секретирует это- вещество во внеклеточную среду рядом с другой клеткой (или слоем клеток), которая захватывает его путем эндоцитоза. Такой феномен получил название трансцитоз, он имеет отно­шение к межклеточному транспорту веществ, к обмену макро­молекул между клетками. Таким образом, трансцитоз (лат. trans - сквозь, через и cytos - клетка) процесс, который пред­ставляет собой сочетание эндоцитоза (чаще всего пиноцитоза) и экзоцитоза одного и того же вещества в одной и той же клетке. Благодаря этому вещества могут поступать в опре­деленные ткани, преодолевая тканевые барьеры.

-учащиеся записывают тему урока

-учащиеся высказывают свое предположение (везикула- это пузырек. Перенос осуществляется при помощи внедрения пузырька в клетку и из клетку)

Читайте также: