Расстройства цикла бета-окисления

Обновлено: 18.05.2024

β-Окисление - специфический путь катаболизма жирных кислот, при котором от карбоксильного конца жирной кислоты последовательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисления жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.

Активация жирных кислот. Перед тем, как вступить в различные реакции, жирные кислоты должны быть активированы, т.е. связаны макроэргической связью с коферментом А:

RCOOH + HSKoA + АТФ → RCO ~ КоА + АМФ + PPi.

Реакцию катализирует фермент ацил-КоА син-тетаза. Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой: Н4Р2О7 + Н2О → 2 Н3РО4. Выделение энергии при гидролизе макроэргической связи пирофосфата смещает равновесие реакции вправо и обеспечивает полноту протекания реакции активации. Ацил-КоА синтетазы находятся как в цитозоле, так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии. Активация этих жирных кислот происходит в матриксе митохондрий. Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА синтетазами, расположенными на внешней мембране митохондрий.


Транспорт жирных кислот с длинной углеводородной цепью в митохондриях. β-Окисление жирных кислот, происходит в матриксе митохондрий, поэтому после активации жирные кислоты должны транспортироваться внутрь митохондрий. Жирные кислоты с длинной углеводородной цепью переносятся через плотную внутреннюю мембрану митохондрий с помощью карнитина. Карнитин поступает с пищей или синтезируется из незаменимых аминокислот лизина и метионина. В реакциях синтеза карнитина участвует витамин С (аскорбиновая кислота).В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I), катализирующий реакцию с образованием ацилкарнитина. Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранс-локазы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнитинацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА. Таким образом, ацил-КоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой. На внутренней поверхности внутренней мембраны находится фермент карнитинацил трансфераза II, катализирующий обратный перенос ацила с карнитина на внутримитохондриальный КоА. После этого ацил-КоА включается в реакции β-окисления.

β-Окисление жирных кислот - специфический путь катаболизма жирных кислот, протекающий в матриксе митохондрий только в аэробных условиях и заканчивающийся образованием ацетил-КоА. Водород из реакций β-окисления поступает в ЦПЭ, а ацетил-КоА окисляется в цитратном цикле, также поставляющем водород для ЦПЭ. Поэтому β-окисление жирных кислот - важнейший метаболический путь, обеспечивающий синтез АТФ в дыхательной цепи.


β-Окисление начинается с дегидрирования ацил-КоА FAD-зависимой ацил-КоА дегидрогеназой с образованием двойной связи между α- и β-атомами углерода в продукте реакции - еноил-КоА. Восстановленный в этой реакции кофермент FADH2 передаёт атомы водорода в ЦПЭ на кофермент Q. В результате синтезируются 2 молекулы АТФ. В следующей реакции р-окисления по месту двойной связи присоединяется молекула воды таким образом, что ОН-группа находится у β-углеродного атома ацила, образуя β-гидроксиацил-КоА. Затем β-гидроксиацил-КоА окисляется NАD + -зависимой дегидрогеназой. Восстановленный NADH, окисляясь в ЦПЭ, обеспечивает энергией синтез 3 молекул АТФ. Образовавшийся β-кетоацил-КоА подвергается тиолитическому расщеплению ферментом тиолазой, так как по месту разрыва связи С-С через атом серы присоединяется молекула кофермента А. В результате этой последовательности из 4 реакций от ацил-КоА отделяется двухуглеродный остаток - ацетил-КоА. Жирная кислота, укороченная на 2 атома углерода, опять проходит реакции дегидрирования, гидратации, дегидрирования, отщепления ацетил-КоА. Эту последовательность реакций обычно называют "циклом β-окисления", имея в виду, что одни и те же реакции повторяются с радикалом жирной кислоты до тех пор, пока вся кислота не превратится в ацетильные остатки.

Продуктами каждого цикла β-окисления являются FADH2, NADH и ацетил-КоА. Хотя реакции в каждом "цикле" одни и те же, остаток кислоты, который входит в каждый последующий цикл, короче на 2 углеродных атома. В последнем цикле окисляется жирная кислота из 4 атомов углерода, поэтому образуются 2 молекулы ацетил-КоА, а не 1, как в предыдущих. Суммарное уравнение β-окисления, например пальмитоил-КоА может быть представлено таким образом:

С15Н31СО-КоА + 7 FAD + 7 NAD+ + 7 HSKoA → 8 СН3-СО-КоА + 7 FADH2 + 7 (NADH + H + ).

Если рассчитывать выход АТФ при окислении пальмитиновой кислоты то из общей суммы молекул АТФ необходимо вычесть 2 молекулы, так как на активацию жирной кислоты тратится энергия 2 макроэргических связей. Следовательно, энергетический выход равен:

где n/2 – количество молекул Ацетил-КоА

n – количество С-атомов

12 – количество АТФ, получаемое при окислении Ацетил-КоА

n/2-1 – количество циклов β-окисления

5– количество молекул АТФ, образовавшихся в цикле за счет 2 реакций дегидрирования

Расстройства цикла бета-окисления

Расстройства цикла бета-окисления (см. таблицу Расстройства транспорта жирных кислот и митохондриального окисления ) являются одними из нарушений обмена жирных кислот и глицерина Обзор нарушений метаболизма жирных кислот и глицерина (Overview of Fatty Acid and Glycerol Metabolism Disorders) Жирные кислоты являются предпочтительным источником энергии для сердца и важным источником энергии для скелетных мышц при длительной нагрузке. Кроме того, во время голодания большая часть энергетической. Прочитайте дополнительные сведения .

Ацетил-КоА генерируется из жирных кислот путем повторяющихся бета-оксидазных циклов. Набор 4 ферментов (ацил-дегидрогеназа, гидратаза, гидроксиацил дегидрогеназа и лиаза), специфичных для цепей различной длины (очень длинные цепи, длинные цепи, средние цепи и короткие цепи), требуется для полного катаболизирования жирных кислот. Наследование всех дефектов окисления жирных кислот аутосомно-рецессивное Аутосомно-рецессивные Генетические нарушения, вызванные изменениями в одном гене («Менделевские нарушения»), являются самыми простыми для анализа и наиболее хорошо поняты. Если экспрессия признака требует только. Прочитайте дополнительные сведения .

Дефицит среднецепочечной ацил-КоА дегидрогеназы (MCADD)

Этот дефицит является наиболее распространенным дефектом в цикле бета-окисления.

Клинические проявления обычно возникают после 2–3 месяцев ячного возраста и обычно следуют за эпизодом голодания (хотя бы 12 часов). У пациентов возникают рвота и сонливость, которые могут быстро прогрессировать до судорог, комы, а иногда и смерти (что также может выглядеть как синдром внезапной детской смерти). Во время приступов у пациентов отмечаются гипогликемия, гипераммониемия и неожиданно низкое содержание кетонов в моче и сыворотке. Метаболический ацидоз часто присутствует, но может быть поздним проявлением.

MCADD диагностируется на основании обнаружения конъюгатов карнитина среднецепочных жирных кислот в плазме или глицина в моче или путем обнаружения дефицита ферментов в культуре фибробластов; однако изучение ДНК может подтвердить диагноз в большинстве случаев. MCADD теперь входит в рутинный неонатальный скрининг Скрининговые тесты для новорождённых Рекомендации по скринингу новорожденных зависят от клинических условий и государственных стандартов. Определение группы крови показано, если мать имеет кровь группы 0 или резус-отрицательную. Прочитайте дополнительные сведения во всех штатах США.

Лечение острых приступов внутривенным введением 10%-ного раствора декстрозы, в 1,5 раза превышающего поддерживающий уровень жидкости ( Поддерживающее введение жидкости Поддерживающее введение жидкости Обезвоживание – значительное уменьшение количества жидкости в организме и, в разной степени, электролитов. Клинические проявления включают следующие: жажда, вялость, сухость слизистых оболочек. Прочитайте дополнительные сведения ); некоторые врачи также выступают за добавление карнитина во время острых эпизодов. Профилактика состоит в применении диеты с низким содержанием жиров и высоким – углеводов и избегании длительного голодания. Терапия кукурузным крахмалом часто используется, чтобы обеспечить запас безопасности во время ночного голодания.

Недостаточность длинноцепочечной 3-гидроксиацил-КоА дегидрогеназы (НДЦГАН)

Этот недостаток является вторым наиболее распространенным дефектом окисления жирных кислот. Он разделяет многие черты MCADD, но пациенты также могут иметь кардиомиопатии; рабдомиолиз, значительное увеличение креатинкиназы и миоглобинурии при мышечном напряжении; периферическую нейропатию и нарушение функции печени. У матерей, беременных плодом с дефицитом LCHAD, часто наблюдается HELLP-синдром Диагностика Преэклампсия представляет собой впервые возникшую после 20 недель беременности гипертензию на фоне протеинурии, либо усугубление тяжести уже имеющейся гипертензии. Эклампсия – необъяснимые генерализованные. Прочитайте дополнительные сведения (гемолиз, повышенные уровни печеночных ферментов и низкое содержание тромбоцитов) во время беременности.

Диагноз LCHADD основан на присутствии избытка длинноцепочечных гидроксикислот по анализу органической кислоты и на присутствии конъюгатов карнитина в профиле ацилкарнитина или конъюгатов глицина в профиле ацилглицина. Диагноз LCHADD может быть подтвержден путем исследования ферментов фибробластов кожи или генетическим тестированием. LCHADD теперь входит в рутинный неонатальный скрининг Скрининговые тесты для новорождённых Рекомендации по скринингу новорожденных зависят от клинических условий и государственных стандартов. Определение группы крови показано, если мать имеет кровь группы 0 или резус-отрицательную. Прочитайте дополнительные сведения во всех штатах США.

Лечение во время обострений включает гидратацию, высокие дозы глюкозы, постельный режим, подщелачивание мочи и прием добавок карнитина. Длительное лечение включает в себя диету с высоким содержанием углеводов, добавок среднецепочных триглицеридов, а также исключение голодания и физических нагрузок.

Дефицит очень длинноцепочечный ацил-СоА-дегидрогеназы (VLCADD)

Этот дефицит похож на LCHADD, но обычно связан со значительными кардиомиопатиями.

Глутаровая ацидемия типа II

Дефект в передаче электронов от кофермента жирных ацильных дегидрогеназ к электронной транспортной цепи повреждает реакции, вовлекающие жирные кислоты с цепью любой длины (множественный дефицит ацил-КоА дегидрогеназ); окисление нескольких аминокислот также затронуто.

Клинические проявления, таким образом, включают гипогликемию натощак, тяжелый метаболический ацидоз и гипераммониемию.

Глутаровая ацидемия типа II диагностируется на основании увеличения уровня этилмалоновой, глутаровой, 2- и 3-гидроксиглутаровой и других дикарбоновых кислот при анализе на органические кислоты, а также глутарила, изовалерила и других ацилкарнитинов в исследованиях с тандемной масс-спектрометрией. Подтвержающим тестом может быть анализ ДНК.

Лечение глутарового типа ацидемии II аналогично лечению MCADD, за исключением того, что рибофлавин может быть эффективным для некоторых пациентов.

Дополнительная информация

Ниже следует англоязычный ресурс, который может быть информативным. Обратите внимание, что The manual не несет ответственности за содержание этого ресурса.

Online Mendelian Inheritance in Man® (OMIM®) database: полная информация о генах и их молекулярной и хромосомной локализации

Авторское право © 2022 Merck & Co., Inc., Rahway, NJ, США и ее аффилированные лица. Все права сохранены.

Обзор нарушений метаболизма жирных кислот и глицерина (Overview of Fatty Acid and Glycerol Metabolism Disorders)

Наследуемые дефекты бета-оксидации жирных кислот включают в себя группу по меньшей мере 12 заболеваний, характеризующиеся дефицитом отдельных ферментов или транспортеров. Большинство из этих заболеваний имеют различающиеся возраст начала и клинической тяжести. Симптоматика чаще всего является эпизодической и проявляется на фоне вирусных инфекций, физиологического стресса или пролонгированной физической нагрузки. В зависимости от характера генетического дефекта пациенты развивают гипокетонемическую гипогликемию, кардиомиопатию, рабдомиолиз, нарушение функции печени или внезапную смерть. Диагноз основывается на оценке специфических биохимических маркеров (ацетилкарнитиновый профиль периферической крови). Превентивные мероприятия эффективно предупреждают тяжёлые клинические проявления, включая внезапную смерть.


1. Казанцева Л.З., Николаева Е.А. Клинические проявления, диагностика и возможности лечения важнейших генетически детерминированных заболеваний, вязанных с патологией обмена органических кислот у детей // Лечащий врач. – 1999. – № 1. – C. 43–47.

2. Brown N.F., Mullur R.S., Subramanian I., Esser V., Bennett M.J., Saudubray J.M., Feigenbaum A.S., Kobari J.A., Macleod P.M., Mcgarry J.D., Cohen J.C. Molecular characterization of L-CPT I deficiency in six patients: insights into function of the native enzyme // Journal of lipid research. – 2001. – Vol. 42, № 7. – P. 1134–1142.

4. Gessner B.D., Gillingham M.B., Johnson M.A., Richards C.S., Lambert W.E., Sesser D., Rien L.C., Hermerath C.A., Skeels M.R., Birch S., Harding C.O., Wood T., Koeller D.M. Prevalence and distribution of the c.1436C-->T sequence variant of carnitine palmitoyltransferase 1A among Alaska Native infants // The Journal of pediatrics. – 2011. – Vol. 158, № 1. – P. 124–129.

5. Greenberg C.R., Dilling L.A., Thompson G.R., Seargeant L.E., Haworth J.C., Phillips S., Chan A., Vallance H.D., Waters P.J., Sinclair G., Lillquist Y., Wanders R.J., Olpin S.E. The paradox of the carnitine palmitoyltransferase type Ia P479L variant in Canadian Aboriginal populations // Molecular genetics and metabolism. – 2009. – Vol. 96, № 4. – P. 201–207.

6. Gregersen N., Andresen B.S., Corydon M.J., Corydon T.J., Olsen R.K., Bolund L., Bross P. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship // Human mutation. – 2001. – Vol. 18, № 3. – P. 169–189.

7. Kompare M., Rizzo W.B. Mitochondrial fatty-acid oxidation disorders // Seminars in pediatric neurology. – 2008. – Vol. 15, № 3. – P. 140–149.

8. Lang T.F. Adult presentations of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) // Journal of inherited metabolic disease. – 2009. – Vol. 32, № 6. – P. 675–683.

9. Newborn screening: toward a uniform screening panel and system--executive summary. // Pediatrics. – 2006. – Vol. 117, № 5 Pt 2. – P. S296–307.

10. Sanderson S., Green A., Preece M.A., Burton H. The incidence of inherited metabolic disorders in the West Midlands, UK // Archives of disease in childhood. – 2006. – Vol. 91, № 11. – P. 896–899.

11. Schatz U.A., Ensenauer R. The clinical manifestation of MCAD deficiency: challenges towards adulthood in the screened population // Journal of inherited metabolic disease. – 2010. – Vol. 33, № 5. – P. 513–520.

12. Spiekerkoetter U. Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening // Journal of inherited metabolic disease. – 2010. – Vol. 33, № 5. – P. 527–532.

Наследуемый дефицит карнитин пальмитоилтрансферазы входит в группу митохондриальных болезней с нарушением бета-окисления жирных кислот. Врождённые дефекты оксидации жирных кислот, особенно интенсивно изучающиеся в последние 10–15 лет, насчитывают, по меньшей мере, 12 заболеваний, согласно количеству ферментов, участвующих в процессе окисления. Указанные метаболические дефекты могут иметь серьезные клинические последствия в виде гипогликемических судорог, повреждения мышц, метаболи ческого ацидоза и поражения печени. Считается, что такие клинические состояния, как рабдомиолиз после физической нагрузки, неясная печеночная энцефалопатия и гипокетонемическая гипогликемия с судорожным синдромом в раннем младенческом возрасте, в большинстве случаев ассоциированы с врожденными дефектами митохондриального окисления жирных кислот. Кроме того, известно, что часть случаев синдрома внезапной смерти младенческого возраста асс оциирована с наличием мутаций, характерных для митохондриальных болезней.

Значительный прогресс в изучении указанных заболеваний был достигнут в последнее десятилетие, что связано с акти вным внедрением неонатального скрини нга с использованием тандемной масс -спектр ометрии и генетического тестирования.

Эпидемиология. В целом, каждая из митохондриальных болезней с нарушением бета-окисления жирных кислот встречается редко, однако вся группа занимает значительную долю среди наследуемых дефектов метаболизма. Например , результаты крупномасштабного исследования, проведенного в Великобритании в 1998–2003 гг., показали следующую распространенность и структуру наследуемых дефектов метаболизма [10]:

● Митохондриальные болезни (в том числе, болезни нарушения бета-окисления жирных кислот) – 20.3 на 100 000;

● Лизосомальные болезни накопления – 19.3 на 100 000;

● Нарушения обмена аминокислот (исключая фенилкетонурию) – 18.7 на 100 000;

● Органические ацидемии – 12.6 на 100 000;

● Фенилкетонурия – 8.1 на 100 000;

● Пероксисомные болезни – 7.4 на 100 000;

● Болезни накопления гликогена – 6.8 на 100 000;

● Болезни нарушения цикла мочевины – 4.5 на 100 000.

Митохондриальное бета-окисление жирных кислот обеспечивает углеродными субстратами процесс глюконеогенеза и энергетические потребности в фазу голодания организма. В печени процесс бета-окисления генерирует ацетил-КоА (коэнзим А), что поддерживает глюконеогенез и кетогенез (образование бета-гидроксибутирата и ацетоацетата). В мышцах бета-окисление к ритически необходимо для вовлечения ацетил-КоА в цикл Кребса и обеспечение энергетических потребностей, но в мышечной ткани кетоновые тела почти не образуются. Ткани головного мозга крайне нуждаются в бета-окислении для энергопродукции, одновременно утилизируя для этих же целей кетоны, синтезированные в печени . Если при голодании печень не синтезирует кетоновые тела в нужном количестве, головной мозг испытывает мета болический шок, клинически проявляющийся нарушением сознания и судорог ами.

Жирные кислоты (ЖК) с различной длиной углеродной цепи (коротко-, средне- и длинноцепочеч ные) являются компонентами триглицеридов и фосфолипидов. Ос новным источником жирных кислот во время голодания являются триглицериды жировой ткани, которые расщепляются под влиянием липаз (ингибируются инсулином), далее жирные кислоты поступают в печень и активируются путем присоединения ацетил-КоА и формирования комплекса ацетил-КоА-ЖК (процесс этерификации, специфический для каждой жирной кислоты). Комплекс ацетил-КоА-ЖК формируется в цитоплазме гепатоцитов, но для проникновения в митохондрии длинноцепочечных ЖК необходим отдельный метаболический путь с участием карнитина и специфических ферментов.

Метаболический путь с участием карнитин пальмитоилтрансферазы (CPT). Во время фазы насыщения организма фермент ацетил-КоА карбоксилаза активен и конвертирует ацетил-КоА (коэнзим А) в малонил-КоА, которы й ингибирует активность CPT 1 типа. Во время фазы голодани я глюкагон деактивирует ацетил-КоА карбоксилазу путём фосфорилирования. Концентрация малонил-КоА падает, что активирует CPT1, которая, находясь на внешней стороне мембран митохондрий, заменяет молекулы КоА на карнитин в цитоплазматически х длинноцепочечных жирных кислотах (ДЖК). Комплекс карнитин-ДЖК перемещается на внутреннюю часть мембран митохондрий, где посредством CPT 2 типа происходит обратная замена карнитина на ацетил-КоА и комплекс ацетил-КоА-ДЖК поступает во внутренние компартаменты митохондрий для участия в процессе бета-оксидации жирных кислот. Процесс переноса длинноцепочечных ЖК через мембрану митохондрий с участием карнитина и соответствующих ферментов носит условное название «карнитиновый шаттл» (рис. 1).

В отличие от длинноцепочечных жирных кислот (C16-18), коротко- и среднецепочечные жирные кислоты не нуждаются в «карнитиновом шаттле» и способны прямо проникать через митохондриальную мембрану. Эта их способность используется в терапевтических целях путем диетического замещения при состояниях, которые связаны с тем или иным нарушением «карнитинового шаттла» (системный дефицит карнитина, дефицит CPT 1 и 2 типов и т.д.).

Дефицит ацетил-КоА дегидрогеназы среднецепочечных жирных кислот (medium-chain acyl-CoA dehydrogenase, MCAD дефицит) считается самым частым и изученным дефектом оксидации ЖК (частота составляет 1:4000–1:10000 новорождённых в северной Европе). Эксперты поставили этот метаболический дефект на первое место в очень широком списке претендентов для создания программы неонатального скрининга метаболических болезней в Европе [9]. Клинические проявления включают в себя гипокетонемическую гипогликемию на фоне катаболического стресса (голодание, инфекция, рвота, диарея, лихорадка), могут быть судороги и кома. У выживших после комы пациентов отмечается умеренный психоневрологический дефицит, гепатомегалия. Медиана возраста первых проявлений – 1,5 года (варьиру ет от новорожденных до подросткового возраста). Считается, что с возрастом метаболические кризы становятся реже и исчезают у многих выживших пациентов после 5 лет . Однако при отсутствии диетической ко ррекции, повторяющиеся гипогликемические кризы могут приводить к задержке психомоторного развития и трудностями в обучении. В то же время, недавно опубликованные данные неонатального скрининга показывают, что многие случаи протекают асимптомно, хотя у носителей дефекта смертность превышает популяционную в 5 раз.

Дефекты бета-окисления длинноцепочечных жирных кислот можно разделить на 4 группы, имеющие различающиеся клинические проявления и подходы к терапии:

1. Дефект карнитинового траспортера, ведущий к дефициту карнитина – дефицит OCTN2 (organic cation carnitine transporter 2).

2. Дефекты вышеописанного «карнитинового шаттла» – дефициты CPT1 и CPT2 (carnitine palmitoyl-CoA transferase 1 and 2), дефицит CACT (carnitine acylcarnitine translocase).

3. Дефекты непосредственно процесса бета-оксидации – дефицит VLCAD (very-long-chain acyl-CoA dehydrogenase), дефицит LCHAD (long-chain 3-hydroxyacyl-CoA dehydrogenase), дефицит mTFP (mitochondrial trifunctional protein), дефицит LKAT (long-chain 3-ketoacyl-CoA thiolase), дефицит ACAD9 (acyl-CoA dehydrogenase 9).

4. Множественный дефицит ацетил-КоА дегидрогеназ – MAD (multiple acyl-CoA dehydrogenase) дефицит.Митохондриальные болезни с нарушением бета-окисления жирных кислот в большинстве случаев имеют аутосомно-рецессивный характер наследования, клинические проявления чаще всего интермиттирующие и выявляются в периоды повышенной энергетической потребности. Кризы могут быть связаны с голоданием, стрессом (например, инфекцией) и интенсивной физической нагрузкой. Для большинства указанных метаболических дефектов описаны одна или несколько каузальных мутаций, формирующие различающиеся по степени выраженности клинических проявлений фенотипы.

N. Gregersen с соавт. [6] предложили выделять три клинических фенотипа наследуемого дефицита окисления длинноцепочечных жирных кислот:

1. Ранняя, часто неонатальная, манифестация с тяжелым течением. Фенотип
характеризуется наличием кардиомиопатии (может быть с перикардитом), печеночной энцефалопатии (близкой по клинико-лабораторным проявлениям к синдрому Рея) или тяжелой гипокетонемической гипогликемии (могут быть судороги и кома). Также возможно и различное сочетание указанных синдромов. Общая летальность без лечения составляет 40–80 %, смерть может наступить в первые дни жизни, хотя внутриутробные проявления чаще всего отсутствуют. Кардиомиопатия полностью обратима при восполнении энергодефицита диетическим добавлением среднецепочечных жирных кислот. Гипогликемия также мож ет быть предупреждена более частыми кормлениями и контролем избыточного катаболизма (добавление в пищу легкоу свояемых углеводов, например, термически не обработанного кукурузного крахмала во время инфекций и других интеркуррентных заболеваний; в более старшем возрасте – избегание голодания, употребления алкоголя (особенно «на голодный желудок»), резкого диет-опосредованного похудания, профессиональных занятий спортом и особых протоколов ведения беременности [11]).

2. Манифестация в первые годы жизни с относительно нетяжелым течением. В основном проявляется гипокетонемической гипогликемий при стрессовых условиях (голодание, инфекции) и гепатомегалией вследствие гепатостеатоза. Клинические проявления весьма похожи на MCAD дефицит (см. выше). При соответствующем лечении прогноз благоприятный с полной реверсией стеатоза. Терапия такая же, как и при первом фенотипе.

3. Поздняя манифестация (подростки, взрослые) с преобладанием мышечных симптомов. Характеризуется эпизодами мышечной слабости, болей в мышцах и рабдомиолиза после физической нагрузки. Характерна острая или персистирующая гиперферментемия (увеличение концентраций креатинфософкиназы, аминотрансфераз). Анамнез иногда указывает на наличие признаков 1 или 2 фенотипов в раннем детстве. Соответствующие протективные меры (легкоусвояемые углеводы перед предполагаемой нагрузкой, запрет на занятия профессиональным спортом) позволяют избежать потенциально фатального рабдомиолиза.

Ассоциация клинических проявлений с метаболическим дефектом при врожденных нарушениях митохондриального окисления жирных кислот показана в таблице.

Проведенный в последние годы неонатальный скрининг показал, что многие дети с наличием метаболического дефекта окисления длинноцепочечных жирных кислот (VLCAD – оказался самым частым выявляемым дефектом из этой группы, а также CPT1 и CPT2) остаются бессимптомными на протяжении длительного периода наблюдения [12]. Некоторые VLCAD позитивные пациенты со временем развивают симптомы миопатии. Считается, что в основе благоприятного клинического течения митохондриальных болезней может лежать относительно высокая резуидальная активность затронутого дефектом фермента [12].

Ассоциация клинических проявлений с метаболическим дефектом при врожденных нарушениях митохондриального окисления жирных кислот)

Гипокетонемическая гипогликемия после голодания/катаболического стресса

PCD = primary carnitine deficiency, CACT. CPT1, CPT2, LCHAD, MCAD, SCAD, MTP, VLCAD, ACAD9

Деградация жирных кислот: β-окисление

167

А. Деградация жирных кислот: β-окисление

После попадания в клетки жирные кислоты активируются путем образования ацил-КоА Для этого нужны две богатые энергией ангидридные связи АТФ (см. с. 112). В матрикс митохондрий активированные жирные кислоты попадают в виде ацилкарнитина, который является трансмембранным переносчиком (см. с. 214).

Деградация жирных кислот происходит в митохондриальном матриксе путем окислительного цикла реакций, при котором последовательно отщепляются С 2 -звенья в виде ацетил-КоА ( активированной уксусной кислоты ). Последовательное отщепление ацетильных групп начинается с карбоксильного конца активированных жирных кислот каждый раз между С-2 (α-атомом) и С-3 (β-атомом). Поэтому цикл реакций деградации называется β-окислением . Пространственно и функционально β-окисление тесно связано с цитратным циклом (см. с. 140) и дыхательной цепью (см. с. 142).

Первая стадия β-окисления — дегидрирование активированной жирной кислоты ( ацил-КоА ) с образованием β-ненасыщенной жирной кислоты с двойной связью в транс -конфигурации (реакция [ 1 ]: дегидрирование ). При этом оба атома водорода с электронами переносятся от фермента [ 1 ] на электронпереносящий флавопротеин (ETF) . ETF-дегидрогеназа ( 5 ) переносит восстановительные эквиваленты на убихинон (кофермент Q), который является составной частью дыхательной цепи (см. рис. 143). Вторая стадия деградации жирной кислоты состоит в присоединении молекулы воды к двойной связи ненасыщенной жирной кислоты (реакция [ 2 ]: гидратирование ). На третьей стадии происходит окисление гидроксильной группы при С-3 в карбонильную группу (реакция [ 3 ]: дегидрирование ). Акцептором для восстановительных эквивалентов является НАД + который передает их в дыхательную цепь . На четвертой стадии активированная β-кетокислота расщепляется ацилтрансферазой (β-кетотиолазой) в присутствии кофермента А (реакция [ 4 ]: тиолитическое расщепление ). Продуктами реакции являются ацетил-КоА и активированная жирная кислота, углеродная цепь которой короче на два углеродных атома по сравнению с длиной цепи исходной жирной кислоты.

Для полной деградации длинноцепочечной жирной кислоты цикл должен многократно повторяться; например, для стеарил-КоА (18:0) необходимы восемь циклов. Образующийся ацетил-КоА может переноситься на оксалоацетат с образованием цитрата, промежуточного метаболита цитратного цикла (см. с. 140). При избытке ацетил-КоА в печени образуются кетоновые тела (см. с. 304).

Б. Энергетический баланс деградации жирных кислот

Для расчета энергетического баланса деградации жирной кислоты в качестве примера рассмотрим молекулу пальмитиновой кислоты (16:0), которая окисляется полностью до 16 молекул СО 2 . На первой стадии жирная кислота активируется, потребляя две богатые энергией связи [АТФ (АТР)], с образованием пальмитоил-СоА состоящего из восьми C 2 -звеньев. Затем протекают семь циклов β-окисления. При этом образуются 7 молекул восстановленной формы флавопротеина (ETF) и 7 молекул НАДН + Н + . Оба соединения включаются в дыхательную цепь; окисление ETF через убихинон дает в итоге 1,5 молекулы АТФ, а НАДН + Н + — 2,5 молекулы (см. рис. 143). Таким образом, β-окисление одного пальмитоильного остатка дает 28 молекул (7 х 4) АТФ. Окисление каждой молекулы ацетил-КоА приводит к образованию 10 молекул АТФ, что означает получение еще 80 молекул (8 x 10) АТФ. Из 28 + 80 молекул АТФ следует вычесть две молекулы АТФ, израсходованные при активации пальмитиновой кислоты (см. выше). Итак, при утилизации одной молекулы пальмитиновой кислоты синтезируются 106 молекул АТФ, что соответствует свободной энергии 3300 кДж/моль (106 х 30,5 кДж/моль АТФ). Выигрыш в энергии при деградации жирных кислот существенно выше по сравнению с распадом углеводов (32 молекулы АТФ на 1 молекулу глюкозы) и белков даже с учетом больших размеров молекул. Поэтому жиры представляют собой очень выгодную форму сохранения энергии.

Для окисления жирных кислот существует свой путь

Окисление жирных кислот (β-окисление)

Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление, т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

Элементарная схема β-окисления

Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н2O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН2 + 7НАДН

Этапы окисления жирных кислот

1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.

Реакция активации жирной кислоты

2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ переноса жирной кислоты в комплексе с витаминоподобным веществом карнитином (витамин В11). На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I.

Перенос жирных кислот в митохондрию

Карнитин-зависимый транспорт жирных кислот в митохондрию

Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели".

Дети раннего возраста, недоношенные и дети с малой массой особенно чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина недостаточен, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

3. После связывания с карнитином жирная кислота переносится через внутреннюю митохондриальную мембрану транслоказой . На внутренней стороне этой мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА, который вступает на путь β-окисления.

4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Реакции бета-окисления жирных кислот

Последовательность реакций β-окисления жирных кислот

Расчет энергетического баланса β-окисления

Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH2 – 2,0.

По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH2 – 1,5.

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

Читайте также: