Возбуждающий постсинаптический потенциал. Порог возбуждения нейрона

Обновлено: 17.05.2024

Мембрана всех живых клеток поляризована. Внутренняя сторона мембраны несет отрицательный заряд по сравнению с межклеточным пространством (рис. 1). Величина заряда, который несет мембрана называется мембранным потенциалом (МП). В невозбудимых тканях МП низкий, и составляет около -40 мВ. В возбудимых тканях он высокий, около -60 - -100 мВ и называется потенциалом покоя (ПП).

Потенциал покоя, как и любой мембранный потенциал формируется за счет избирательной проницаемости клеточной мембраны. Как известно, плазмолемма состоит из липидного бислоя, через который движение заряженных молекул затруднено. Белки, встроенные в мембрану, могут избирательно изменять проницаемость мембраны для различных ионов, в зависимости от приходящих стимулов. При этом, для формирования потенциала покоя ведущую роль играют ионы калия, кроме них важны ионы натрия и хлора.

Рис. 1. Концентрации и распределение ионов с внутренней и внешней стороны мембраны.

Большинство ионов распределяются неравномерно с внутренней и внешней стороны клетки (рис. 1). Внутри клетки концентрация ионов калия выше, а натрия и хлора – ниже, чем снаружи. В состоянии покоя мембрана проницаема для ионов калия и практически непроницаема для ионов натрия и хлора. Несмотря на то, что калий может свободно выходить из клетки, его концентрации остаются неизменными благодаря отрицательному заряду на внутренней стороне мембраны. Таким образом, на калий действуют две силы, находящиеся в равновесии: осмотические (градиент концентрации К + ) и электрические (заряд мембраны), благодаря чему число входящих в клетку ионов калия равно выходящим. Движение калия осуществляется через калиевые каналы утечки, открытые в состоянии покоя. Величину заряда мембраны, при которой ионы калия находятся в равновесии можно вычислить по уравнению Нернста:

где Ек — равновесный потенциал для К + ; R — газовая постоянная; Т — абсолютная температура; F — число Фарадея; n — валентность К + (+1), [К + н] — [К + вн] — наружная и внутренняя концентрации К + .

Если подставить в уравнение значения из таблицы на рис. 43, то мы получим величину равновесного потенциала, равную примерно -95 мВ. Это значение вписывается в диапазон мембранного потенциала возбудимых клеток. Отличия ПП разных клеток (даже возбудимых) могут возникать по трем причинам:

  • отличия внутриклеточной и внеклеточной концентраций ионов калия в разных тканях (в таблице приведены данные по среднестатистическому нейрону);
  • натрий-калиевая АТФаза может вносить свой вклад в значение заряда, так как она выводит из клетки 3 Na + в обмен на 2 К + ;
  • несмотря на минимальную проницаемость мембраны для натрия и хлора, эти ионы все-таки могут попадать в клетки, хоть и от 10 до 100 раз хуже, по сравнению с калием.

Чтобы учесть проникновение других ионов в клетку существует уравнение Нернста-Гольдмана:

, где Еm — мембранный потенциал; R — газовая постоянная; Т — аб­солютная температура; F — число Фарадея; РK , PNa и РCl константы проницаемости мембраны для К + Na + и Сl, соответственно; + н], [K + вн], [Na + н], [Na + вн], [Сl — н] и [Сl — вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.

Такое уравнение позволяет установить более точную величину ПП. Обычно, мембрана оказывается на несколько мВ менее поляризована, по сравнению с равновесным потенциалом для К + .

Потенциал действия (ПД) может возникать в возбудимых клетках. Если на нерв или мышцу нанести раздражение выше порога возбуждения, то ПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет кратковременная перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной, после чего восстановится ПП. Это кратковременное изменение ПП, происходящее при возбуждении клетки называется потенциалом действия.

Возникновение ПД возможно благодаря тому, что в отличие от ионов калия, ионы натрия далеки от равновесия. Если подставить в уравнение Нернста натрий вместо калия, то мы получим равновесный потенциал, равный примерно +60 мВ. Во время ПД, происходит кратковременное увеличение проницаемости для Na + . При этом, натрий начнет проникать в клетку под действием двух сил: по градиенту концентрации и по заряду мембраны, стремясь подстроить заряд мембраны под свой равновесный потенциал. Движение натрия осуществляется по потенциал-зависимым натриевым каналам, которые открываются в ответ на смещение мембранного потенциала, после чего сами инактивируются.

Рис. 2. Потенциал действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).

На записи ПД выглядит как кратковременный пик (рис. 44), имеющий несколько фаз.

  1. Деполяризация (фаза нарастания) (рис. 44) – увеличение проницаемости для натрия из-за открытия натриевых каналов. Натрий стремится к своему равновесному потенциалу, но не достигает его, так как канал успевает инактивироваться.
  2. Реполяризация – возвращение заряда к величине потенциала покоя. Помимо калиевых каналов утечки здесь подключаются потенциал-зависимые калиевые каналы (активируются от деполяризации). В это время калий выходит из клетки, возвращаясь к своему равновесному потенциалу.
  3. Гиперполяризация (не всегда) – возникает в случаях, если равновесный потенциал по калию превышает по модулю ПП. Возвращение к ПП происходит после возвращения к равновесному потенциалу по К + .

Во время ПД происходит изменение полярности заряда мембраны. Фаза ПД, при которой заряд мембраны положителен, называется овершутом (рис. 2).

Благодаря Н-воротам инактивация канала происходит раньше, чем потенциал на мембране достигнет равновесной величины по натрию. После прекращения поступления натрия в клетку, происходит реполяризация за счет выходящих из клетки ионов калия. При этом к каналам утечки в этом случае подключаются еще и потениал-активируемые калиевые каналы. Во время реполяризации, в быстром натриевом канале быстро закрываются М-ворота. Н-ворота открываются гораздо медленнее и остаются закрытыми еще некоторое время после возвращения заряда к потенциалу покоя. Этот период принято называть периодом рефрактерности.

Рис. 3. Работа потенциал-управляемого натриевого канала.

Концентрации ионов внутри клетки восстанавливает натрий-калиевая АТФаза, которая с затратой энергии в виде АТФ откачивает из клетки 3 иона натрия и закачивает 2 иона калия.

По немиелинизированному волокну или по мембране мышцы потенциал действия распространяется непрерывно. Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до порогового значения, в результате чего на соседнем участке возникает деполяризация. Главную роль в возникновении потенциала на новом участке мембраны предыдущий участок. При этом на каждом участки сразу после ПД наступает период рефрактерности, за счет которое ПД распространяется однонаправленно. При прочих равных условиях распространение потенциала действия по немиелинизированному аксону происходит тем быстрее, чем больше диаметр волокна. У млекопитающих скорость составляет 1-4 м/с. Поскольку у беспозвоночных животных отсутствует миелин, в гигантских аксонах кальмара скорость ПД может достигать 100 м/c.

По миелинизированному волокну потенциал действия распространяется скачкообразно (сальтаторное проведение). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье; здесь их плотность в 100 раз больше, чем в мембранах немиелинизированных волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. Потенциал действия, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до порогового значения, что приводит к возникновению в них новых потенциалов действия, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье потенциал действия возбуждает 2-й, 3-й, 4-й и даже 5-й, поскольку электроизоляция, создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля. Сальтаторное проведение увеличивает скорость проведения ПД 15-20 раз до 120 м/с.

Работа нейронов

Нервная система состоит из нейронов и глиальных клеток. Однако, главную роль в проведении и передаче нервных импульсов играют нейроны. Они получают информацию от множества клеток по дендритам, анализируют ее и передают или не передают на следующий нейрон.

Передача нервного импульса с одной клетки на другую осуществляется с помощью синапсов. Различают два основных типа синапсов: электрические и химические (рис. 4). Задача любого синапса – передать информацию с пресинаптической мембраны (мембрана аксона) на постсинаптическую (мембрана дендрита, другого аксона, мышцы или другого органа-мишени). Большинство синапсов нервной системы образуется между окончанием аксонов и дендритами, которые в области синапса образуют дендритные шипики.

Преимущество электрического синапса состоит в том, что сигнал с одной клетки на другую переходит без задержки. Кроме того, такие синапсы не утомляются. Для этого пре- и постсинаптические мембраны соединены поперечными мостиками, через которые ионы из одной клетки могут перемещаться в другую. Однако, существенным минусом такой системы является отсутствие однонаправленной передачи ПД. То есть, он может передаваться как с пресинаптической мембраны на постсинаптическую, так и наоборот. Поэтому, такая конструкция встречается достаточно редко и в основном – в нервной системе беспозвоночных.

Рис. 4. Схема строения химического и электрического синапсов.

Химический синапс весьма распространен в природе. О устроен сложнее, так как необходима система преобразования электрического импульса в химический сигнал, затем, вновь в электрический импульс. Все это приводит к возникновению синаптической задержки, которая может составить 0,2-0,4 мс. Кроме того, может произойти истощение запасов химического вещества, что приведет к утомлению синапса. Однако, такой синапс обеспечивает однонаправленность передачи ПД, что является его главным преимуществом.

Рис. 5. Схема работы (а) и электронная микрофотография (б) химического синапса.

В состоянии покоя окончание аксона, или пресинаптическое окончание, содержит мембранные пузырьки (везикулы) с нейромедиатором. Поверхность везикул заряжена отрицательно, чтобы предотвратить связывание с мембраной, и покрыта специальными белками, и принимающими участие в высвобождении везикул. В каждом пузырьке находится одинаковое количество химического вещества, которое называется квантом нейромедиатора. Нейромедиаторы весьма разнообразны по химическому строению, однако, большинство из них производятся прямо в окончании. Поэтому, в нем могут находиться системы, для синтеза химического посредника, а также аппарат Гольджи и митохондрии.

Постсинаптическая мембрана содержит рецепторы к нейромедиатору. Рецепторы могут быть в виде как ионных каналов, открывающихся при контакте со своим лигандом (ионотропные), так и мембранными белками, запускающими внутриклеточный каскад реакций (метаботропные). Один нейромедиатор может иметь несколько как ионотропных, так и метаботропных рецепторов. При этом, часть из них может быть возбуждающими, а часть – тормозными. Таким образом, реакцию клетки на нейромедиатор будет определять тип рецептора на ее мембране, и разные клетки могут совершенно по-разному реагировать на одно и то же химическое вещество.

Между пре- и постсинаптической мембраной располагается синаптическая щель, шириной 10-15 нм.

При приходе ПД на пресинаптическое окончание, на нем открываются потенциал-активируемые кальциевые каналы и ионы кальция входят в клетку. Кальций связывается с белками на поверхности везикул, что приводит к их транспортировке к пресинаптической мембране с последующим слиянием мембран. После такого взаимодействия нейромедиатор оказывается в синаптической щели (рис. 5) и может связаться со своим рецептором.

Ионотропные рецепторы – это лиганд-активируемые ионные каналы. Это значит, что канал открывается только в присутствии определенного химического вещества. Для разных нейромедиаторов это могут быть натриевые, кальциевые или хлорные каналы. Ток натрия и кальция вызывает деполяризацию мембраны, поэтому такие рецепторы называют возбуждающими. Хлорный ток приводит к гиперполяризации, что затрудняет генерацию ПД. Следовательно, такие рецепторы называют тормозными.

Метаботропные рецепторы к нейромедиаторам относят к классу рецепторов, ассоцированных с G-белками (GPCR). Эти белки запускают разнообразные внутриклеточные каскады реакций, приводящих в конечном итоге либо к дальнейшей передачи возбуждения, либо к торможению.

После передачи сигнала необходимо быстро удалить нейромедиатор из синаптической щели. Для этого в щели присутствуют либо ферменты расщепляющие, нейромедиатор, либо на пресинаптическом окончании или соседних глиальных клетках могут располагаться транспортеры, закачивающие медиатор в клетки. В последнем случае он может использоваться повторно.

Каждый нейрон получает импульсы от 100 до 100 000 синапсов. Одиночная деполяризация на одном дендрите не приведет к дальнейшей передаче сигнала. На нейрон могут приходит одновременно множество как возбуждающих, так и тормозных стимулов. Все они суммируются на соме нейрона. Такая суммация называется пространственной. Далее, может возникнуть или не возникнуть (в зависимости от пришедших сигналов) ПД в области аксонного холмика. Аксонный холмик – это область аксона, примыкающая к соме и обладающая минимальным порогом ПД. Далее импульс распространяется по аксону, конец которого может сильно ветвиться и образовывать синапсы со множеством клеток. Помимо пространственной, существует временная суммация. Она происходит в случае, поступления часто повторяющихся импульсов от одного дендрита.

Помимо классических синапсов между аксонами и дендритами или их шипиками, существуют также синапсы, модулирующие передачу в других синапсах (рис. 6). К ним относят аксо-аксональные синапсы. Такие синапсы способны усиливать или тормозить синаптическую передачу. То есть, если на окончание аксона, образующего аксо-шипиковый синапс, пришел ПД, а в это время по аксо-аксональному синапсу на него пришел тормозный сигнал, высвобождения нейромедиатора в аксо-шипиковом синапсе не произойдет. Аксо-дендритные синапсы могут изменять проведение мембраной ПД на пути от шипика к соме клетки. Также существуют аксо-соматические синапсы, которые могут влиять на суммацию сигнала в области сомы нейрона.

Таким образом, существует огромное многообразие различных синапсов, отличающихся по составу нейромедиаторов, рецепторов и их местоположению. Все это обеспечивает разнообразие реакций и пластичность нервной системы.

1. Возбуждающий постсинаптический потенциал.

Возникает на постсинаптической мембране синапса, т.е. он отражает передачу возбуждения от одного нейрона к другому. Он вызывает деполяризацию мембраны. Но обычно требуется целая серия ВПСП для того, чтобы родился нервный импульс, т.к. величины единичного ВПСП совершенно недостаточно для того, чтобы достичь критического уровня деполяризации.

В возбуж­дающих синапсах нервной системы медиатором может являться ацетилхолин, норадреналин, дофамин, серотонин, глугаминовая кисло­та, вещество Р, а также большая группа других веществ, являющих­ся, если не медиаторами в прямом значении, то во всяком случае модуляторами (меняющими эффектиьность) синаптической передачи.

Его формирование обусловлено тем, что медиатор-рецепторный комплекс активирует Na- каналы мембраны (а также веро­ятно и Са-каналы) и вызывает за счет поступления натрия внутрь клетки деполяризацию мембраны. Одновременно происходит и уменьшение выхода из клетки ионов К + .

9. Строение мембраны возбуждающих тканей. Ионные каналы.

Клетка возбудимых тканей покрыта мембраной, представляющей собой высокоорганизованную структуру, построенную главным образом из белков и липидов. Мембрана представляет собой плоскую структуру толщиной 7-10 нм. Мембраны могут быть однослойные, двухслойные и трехслойные. Если мембрана трехслойная, то наружная ее часть состоит из углеводов, внутренняя – из белков, а среднюю (основа для любой мембраны) образует двойной слой липидов. Если мембрана однослойная, то она состоит только из бислоя липидов. Липиды мембран представлены относительно небольшими молекулами фосфолипидов, гликолипидов и холестерина, несущими гидрофильные и гидрофобные группы. Мембраны пронизаны мельчайшими каналами, которые образуют ее транспортную систему.

Ионные каналы. При генерации потенциала действия лежат процессы открывания и закрывания специализированных ионных каналов мембране, обладающие 2 важнейшими свойствами:

1) избирательностью по отношению к определённым ионам;

2) электровозбудимостью, т.е. способностью открываться и закрываться в ответ а изменения мембранного потенциала. Мембранный потенциал лишь определяет вероятность нахождения канала в открытом или закрытом состоянии.

Через открытые каналы ионы движутся по концентрационному и электрическому градиентам. Эти потоки ионов приводят к изменениям мембранного потенциала, что в свою очередь изменяет среднее число открытых каналов и соответственно величину ионных токов. Такая круговая связь важна для генерации потенциала действия, но она делает невозможным количественную оценку зависимости ионных проводимостей от величины генерируемого потенциала.

11. Потенциал действия.

Потенциалом действия называют быстрое колебание мембранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых других клеток. В его основе лежат изменения ионной проницаемости мембраны. Амплитуда и характер временных изменений потенциала действия мало зависят от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения. Возникнув в месте раздражения, потенциал действия распространяется вдоль нервного или мышечного волокна, не изменяя своей амплитуды. Наличие порога и независимость амплитуды потенциала действия от силы вызвавшего его стимула получили название закона «все или ничего».

Предспайк — процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

Отрицательный следовой потенциал — от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

Положительный следовой потенциал — увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Причиной возникновения потенциала действия в нервных и мышечных волокнах является изменение ионной проницаемости мембраны.

Процесс начинается с открытия Na-канала. Ионы Na устремляются в клетку (по градиенту концентрации), что вызывает локальное обращение знака мембранного потенциала. При этом Na-каналы сразу закрываются, т.е. поток ионов Na в клетку длится очень короткое время. В связи с изменением мембранного потенциала открываются К-каналы и ионы К устремляются в обратном направлении, из клетки. В результате мембранный потенциал принимает первоначальное значение, и даже превышает на короткое время потенциал покоя. После этого (нервная) клетка становится вновь возбудимой.

Постсинаптический потенциал

По́стсинапти́ческий потенциа́л (ПСП) — это вре́менное изменение потенциала постсинаптической мембраны в ответ на сигнал, поступивший с пресинаптического нейрона. Различают:

  • возбуждающий постсинаптический потенциал (ВПСП), обеспечивающий деполяризацию постсинаптической мембраны, и
  • тормозный постсинаптический потенциал (ТПСП), обеспечивающий гиперполяризацию постсинаптической мембраны.

ВПСП приближает потенциал клетки к пороговому значению и облегчает возникновение потенциала действия, тогда как ТПСП, напротив, затрудняет возникновение потенциала действия. Условно вероятность запуска потенциала действия можно описать как потенциал покоя + сумма всех возбуждающих постсинаптических потенциалов - сумма всех тормозных постсинаптических потенциалов > порог запуска потенциала действия [1] .

Отдельные ПСП обычно невелики по амплитуде и не вызывают потенциалов действия в постсинаптической клетке, однако в отличие от потенциалов действия они градуальны и могут суммироваться. Выделяют два варианта суммации [1] :

  • временная — объединение пришедших по одному каналу сигналов (при поступлении нового импульса до затухания предшествующего)
  • пространственная — наложение ВПСП соседних синапсов

Содержание

Механизм возникновения ПСП

При поступлении потенциала действия к пресинаптическому окончанию нейрона происходит деполяризация пресинаптической мембраны и активация потенциал-зависимых кальциевых каналов. Кальций начинает поступать внутрь пресинаптического окончания и вызывает экзоцитоз везикул, наполненных нейромедиатором. Нейромедиатор выбрасывается в синаптическую щель и диффундирует к постсинаптической мембране. На поверхности постсинаптической мембраны медиатор связывается со специфическими белковыми рецепторами (лиганд-зависимыми ионными каналами) и вызывает их открытие.

Различают следующие ПСП:

  1. Спонтанные и миниатюрные ПСП
  2. Потенциал концевой пластинки
  3. Вызванные ПСП

Литература

  • Савельев А. В. Моделирование функциональной нейронной самоорганизации при посттетанической потенциации // Журнал проблем эволюции открытых систем, Казахстан, Алматы, 2004, № 1, с. 127-131.

См. также

Ссылки

Примечания

  1. 12Дубынин, Вячеслав Альбертович Постсинаптические потенциалы. Распространение потенциала действия по нейрону // Регуляторные системы организма человека. — Дрофа, 2003. — С. 115-121. — 368 с. — 7000 экз. — ISBN 5710760730

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Постсинаптический потенциал" в других словарях:

Постсинаптический потенциал возбуждающий — – потенциал, возникающий в результате локальной деполяризации постсинаптической мембраны при действии на нее возбуждающего медиатора, ВПСП (возбуждающий постсинаптический потенциал) … Словарь терминов по физиологии сельскохозяйственных животных

Постсинаптический потенциал тормозной — – потенциал, возникающий в результате локальной гиперполяризации постсинаптической мембраны при действии на нее тормозного медиатора, ТПСП (тормозной постсинаптический потенциал) … Словарь терминов по физиологии сельскохозяйственных животных

ПОСТСИНАПТИЧЕСКИЙ ПОТЕНЦИАЛ ТОРМОЖЕНИЯ — См. постсинаптический потенциал … Толковый словарь по психологии

постсинаптический потенциал возбуждающий — (ВПСП) потенциал, возникающий в результате локальной деполяризации постсинаптической мембраны при действии на нее возбуждающего медиатора … Большой медицинский словарь

постсинаптический потенциал тормозный — (ТПСП) потенциал, возникающий в результате локальной гиперполяризации постсинаптической мембраны при действии на нее тормозного медиатора … Большой медицинский словарь

ВОЗБУЖДАЮЩИЙ ПОСТСИНАПТИЧЕСКИЙ ПОТЕНЦИАЛ — См. постсинаптический потенциал … Толковый словарь по психологии

Постсинаптический потенциал (ПСП) — – любое изменение в мембранном потенциале постсинаптического нейрона. ПСП вызывается веществами медиаторами, выделяемыми пресинаптическими терминальными бляшками. ПСП возбуждения представляют собой состояния деполяризации, снижающие порог… … Энциклопедический словарь по психологии и педагогике

ПОСТСИНАПТИЧЕСКИЙ ПОТЕНЦИАЛ (ПСП) — Вообще, любое изменение в мембранном потенциале постсинаптического нейрона. ПСП вызываются веществами медиаторами, выделяемыми пресинаптическими терминальными бляшками. Постсинаптические потенциалы возбуждения (ПСПВ) представляют собой… … Толковый словарь по психологии

потенциал постсинаптический — кратковременное (от десятков миллисекунд до секунды) колебание мембранного потенциала, возникающее в результате воздействия медиатора на постсинаптическую мембрану нервной клетки. * * * Биоэлектрический потециал, возникающий под воздействием… … Энциклопедический словарь по психологии и педагогике

потенциал концевой пластинки — (ПКП) возбуждающий постсинаптический потенциал, возникающий в нервно мышечном синапсе при передаче возбуждения с нерва на мышцу … Большой медицинский словарь

Тормозной постсинаптический потенциал представляет собой. Тормозный постсинаптический потенциал. Принцип рефлекторной работы

Возбуждающий постсинаптический потенциал (ВПСП) возникает в случае сильного входящего тока ионов Na + и более слабого выходящего тока ионов К + в результате открытия неспецифических каналов при взаимодействии медиатора с соответствующим рецептором на постсинаптической мембране.

Ионные токи, участвующие в возникновении ВПСП, ведут себя иначе, чем токи Na + и К + во время генерации потенциала действия. Это связано с тем, что в механизме возникновения ВПСП участвуют другие ионные каналы с другими свойствами. При образовании потенциала действия активируются потенциалуправляемые ионные каналы, которые с увеличивающейся деполяризацией открывают следующие каналы, так что процесс деполяризации усиливает сам себя. Проводимость ионных каналов на постсинаптической мембране зависит только от количества молекул медиатора, связавшихся с молекулами рецептора и, следовательно, от числа открытых ионных каналов (трансмиттеруправляемые или лигандуправляемые каналы). Амплитуда ВПСП лежит в диапазоне от 100 мкВ до 10 мВ. В зависимости от вида синапса общая продолжительность ВПСП находится в диапазоне от 5 до 100 мс. В зоне синапса локально образовавшийся ВПСП пассивно (электротонически) распространяется по всей постсинаптической мембране клетки. Это распространение не подчиняется закону «все или ничего». Если большое число синапсов возбуждается одновременно или почти одновременно, то возникает явление суммации, которое проявляется в виде возникновения ВПСП существенно большей амплитуды, что может деполяризовать мембрану всей постсинаптической клетки. Если величина этой деполяризации достигает в области постсинаптической мембраны определенного порога (10 мВ и выше), то на аксонном холмике нервной клетки очень быстро открываются потенциалуправляемые Na + -каналы и она генерирует потенциал действия, который распространяется вдоль ее аксона. В случае моторной концевой пластинки это приводит к мышечному сокращению. От начала ВПСП до образования потенциала действия проходит еще около 0,3 мс. При обильном освобождении трансмиттера (медиатора) постсинаптический потенциал может появиться уже через 0,5-0,6 мс после пришедшего в пресинаптическую область потенциала действия. Время синаптической задержки (время между возникновением пре- и постсинаптического потенциала действия) всегда зависит от типа синапса.

Некоторые другие вещества, влияющие на передачу в синапсе.
К рецепторному белку могут иметь высокое сродство и другие соединения. Если их связывание с рецептором приводит к одинаковому с медиатором эффекту, они называются агонистами, если же эти соединения путем связывания, напротив, препятствуют действию медиаторов – антагонистами. Для большинства синапсов установлен целый ряд эндогенных и экзогенных соединений, способных к взаимодействию со связывающим участком постсинаптической мембраны. Многие из них являются лекарствами. Например, для холинергического синапса (медиатор – Ach) агонистом является сукцинилхолин, он так же как и Ach, способствует возникновению ВПСП. Наряду с этим d-тубокурарин (содержится в яде кураре) относится к антагонистам. Он является конкурентным блокатором для никотиновых рецепторов.

2.6. Механизм открытия ионного канала у метаботропных
рецепторов

В противоположность синапсам (например никотиновым), в которых трансмиттер открывает ионный канал, существуют другие рецепторные белки, не являющиеся ионными каналами. Примером может служить холинергический синапс мускаринового типа. Название синапс приобрел по действию агониста – яда мухомора мускарина. В этом синапсе Ach-рецеп-
тором является белок. Этот белок обладает большим химическим сходством со светочувствительным пигментом родопсином, α- и β- адренергическими и другими рецепторами. Ионные каналы, необходимые для возникновения ВПСП, открываются там только благодаря обменным процессам. Поэтому их функция включает процессы метаболизма, а эти рецепторы называют метаботропными. Процесс передачи возбуждения в этом синапсе происходит следующим образом (рис. 1.5, 1.8). Как только медиатор связывается с рецептором, G-белок, имеющий три субъединицы, образует с рецептором комплекс. В этом родопсин, мускариновый рецептор, и все другие рецепторы, связанные с G-белками, похожи друг на друга. ГДФ, связанный с G-белком, заменяется на ГТФ. При этом образуется активированный G-белок, состоящий из ГТФ и α-субъединицы, который и открывает калиевый ионный канал.

У вторичных мессенджеров есть много возможностей для осуществления влияния на ионные каналы. С помощью вторичных мессенджеров определенные ионные каналы могут открываться или закрываться. Наряду с описанным выше механизмом открытия каналов, у многих синапсов при помощи ГТФ могут также активироваться β- и γ-субъединицы, например, в сердце. В других синапсах могут участвовать иные вторичные мессенджеры. Так, ионные каналы могут открываться при помощи цАМФ/IP 3 или фосфорилирования протеинкиназы С. Этот процесс опять связан с G-бел-
ком, который активирует фосфолипазу С, что ведет к образованию IP 3 . Дополнительно увеличивается образование диацилглицерина (ДАG) и протеинкиназы. У мускариновых синапсов и место связывания с медиатором, и ионный канал локализуются не в самом трансмембранном белке. Эти рецепторы связаны непосредственно с G-белком, что дает дополнительные возможности для влияния на функцию синапсов. С одной стороны, для таких рецепторов также существуют конкурентные блокаторы. У мускариновых синапсов это, например, атропин – алкалоид, содержащийся в растениях семейства пасленовых. С другой стороны, известны соединения, которые сами блокируют ионный канал. Они не конкурируют за места связывания и являются так называемыми неконкурентными блокаторами. Известно также, что некоторые бактериальные токсины, такие как холеротоксин или токсин возбудителя коклюша, на уровне синаптического аппарата осуществляют специфические воздействия на систему G-белка. Холеротоксин препятствует гидролизу α-G s -ГТФ в α-G s -ГДФ и повышает тем самым активность аденилатциклазы. Пертуситоксин препятствует связыванию ГТФ с α-G i -субъединицей G-белка и блокирует ингибирующий эффект α-G i . Такое опосредованное действие повышает в цитозоле концентрацию цАМФ. Передача является очень медленной. Время передачи лежит в диапазоне от 100 мс. К мускариновым синапсам относятся постганглионарные, парасимпатические и ауторецепторы ЦНС. Мускариновые рецепторы, образованные от аксонов маунтеровских клеток nucleus basalis (Meyner cells), управляют особыми процессами обучения. При болезни Альцгеймера (деменция) количество маунтеровских клеток в ядре убывает. В таблице 1.3 представлены некоторые вещества, влияющие на передачу в синапсах.

По́стсинапти́ческий потенциа́л (ПСП) - это вре́менное изменение потенциала постсинаптической мембраны в ответ на сигнал, поступивший с пресинаптического нейрона. Различают:

ВПСП приближает потенциал клетки к пороговому значению и облегчает возникновение потенциала действия , тогда как ТПСП, напротив, затрудняет возникновение потенциала действия. Условно вероятность запуска потенциала действия можно описать как потенциал покоя + сумма всех возбуждающих постсинаптических потенциалов - сумма всех тормозных постсинаптических потенциалов > порог запуска потенциала действия .

Отдельные ПСП обычно невелики по амплитуде и не вызывают потенциалов действия в постсинаптической клетке, однако в отличие от потенциалов действия они градуальны и могут суммироваться. Выделяют два варианта суммации :

  • временная - объединение пришедших по одному каналу сигналов (при поступлении нового импульса до затухания предшествующего)
  • пространственная - наложение ВПСП соседних синапсов

При поступлении потенциала действия к пресинаптическому окончанию нейрона происходит деполяризация пресинаптической мембраны и активация потенциал-зависимых кальциевых каналов. Кальций начинает поступать внутрь пресинаптического окончания и вызывает экзоцитоз везикул , наполненных нейромедиатором. Нейромедиатор выбрасывается в синаптическую щель и диффундирует к постсинаптической мембране. На поверхности постсинаптической мембраны медиатор связывается со специфическими белковыми рецепторами (лиганд-зависимыми ионными каналами) и вызывает их открытие.

Возбуждающий постсинаптический потенциал. Порог возбуждения нейрона

ОСНОВЫ ЭЛЕКТРОФИЗИОЛОГИИ НЕРВНЫХ КЛЕТОК

1. Потенциал покоя нейрона. Концентрации натрия и калия внутри и снаружи нервного волокна. Формула Нернста. Калиевый и натриевый равновесные потенциалы. Уравнение Гольдмана. Натрий-калиевый насос и его функции.

2. Нейрон, его основные части, строение мембраны. Разнообразие нейронов. Природа потенциала действия. Критический уровень деполяризации и понятие «порог раздражения». Явление аккомодации. Зависимость пороговой силы раздражения от длительности стимула. Рефрактерность. Следовые потенциалы.

3. Потенциал действия нервной клетки. Кинетика изменения ионных токов и проводимостей во время потенциала действия. Роль различных типов ионных каналов. Инактивация каналов. Механизмы рефрактерности. Эффекты блокаторов потенциал-зависимых натриевых и калиевых каналов.

4. Распространение потенциала действия. Кабельные свойства нервного волокна, теория локальных токов. Факторы, определяющие скорость проведения возбуждения по нервному волокну. Особенности проведения возбуждения по миелинизированному волокну. Потенциал действия в смешанном нерве.

5. Строение аксона и его функции. Классификация нервных волокон. Функции различных типов нервных волокон. Аксонный транспорт: функциональное значение и механизмы.

ФИЗИОЛОГИЯ СКЕЛЕТНЫХ МЫШЦ

6. Строение скелетных мышц. Поперечная исчерченность мышечного волокна и ее происхождение. Молекулярные механизмы сокращения. Зависимость силы сокращения мышечных волокон от их исходной длины. Механизмы мышечного утомления.

7. Электромеханическое сопряжение в скелетных мышцах. Молекулярные механизмы, роль ионов кальция и АТФ.

8. Иннервация скелетной мышцы. Нейромоторные (двигательные) единицы. Одиночное и тетаническое сокращение скелетных мышц. Типы скелетных мышечных волокон, их различия по метаболизму и механическим характеристикам.

9. Сравнение потенциалов действия кардиомиоцитов и поперечно-полосатых мышечных волокон. Динамика ионных токов и проводимостей при возбуждении этих типов мышечных клеток.

10. Сравнение строения и функциональных характеристик скелетных мышц, сердечной мышцы и гладких мышц. Зависимость силы сокращения мышцы от ее длины.

МЕХАНИЗМЫ СИНАПТИЧЕСКОЙ ПЕРЕДАЧИ

11. Нервно-мышечный синапс. Потенциал концевой пластинки и потенциал действия. Квантовая теория высвобождения медиатора. Ацетилхолин и его постсинаптические рецепторы. Вещества, блокирующие нервно-мышечную передачу.

12. Нервно-мышечный синапс. Выделение медиатора из пресинаптического окончания. Миниатюрные потенциалы. Потенциал концевой пластинки. Ацетилхолинэстераза и ее роль.

13. Центральные возбуждающие химические синапсы. Возбуждающий постсинаптический потенциал. Ионные механизмы формирования и связь с потенциалом действия. Аксонный холмик и его роль в генерации потенциала действия нейрона.

14. Тормозный постсинаптический потенциал. Ионные механизмы формирования, функциональное значение. Роль изменения проводимости к ионам Cl - в торможении. Медиаторы, действие которых приводит к проявлению торможения. Постсинаптическое и пресинаптическое торможение.

15. Ацетилхолин как медиатор, рецепторы ацетилхолина, их агонисты и блокаторы. Системы вторичных посредников, активирующиеся при взаимодействии ацетилхолина с рецепторами.

16. Норадреналин как медиатор, рецепторы норадреналина, их агонисты и блокаторы. Системы вторичных посредников, активирующиеся при взаимодействии норадреналина с рецепторами.

17. Глутамат как нейромедиатор. Рецепторы к глутамату, агонисты и антагонисты. Долговременная потенциация.

18. Гамма-аминомасляная кислота и глицин как нейромедиаторы. Рецепторы в ЦНС, агонисты и антагонисты. Синтез и нейромедиаторные функции оксида азота (NO) в центральной нервной системе.

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

19. Строение и функции спинного мозга. Локализация и функции альфа-мотонейронов, гамма-мотонейронов, нейронов вегетативной нервной системы, интернейронов. Понятие о рефлексе и рефлекторной дуге. Рефлексы, вызываемые с рецепторов мышц, сухожилий и кожи.

20. Дивергенция и конвергенция возбуждения в нейронных сетях. Временная и пространственная суммация. Реципрокное и возвратное торможение. Моносинаптические и полисинаптические рефлексы.

21. Мышечные веретена и сухожильные органы. Стимулы, вызывающие их активацию. Эфферентная иннервация мышечных веретен. Физиологическое значение гамма-петли.

22. Строение и функции продолговатого мозга, моста и среднего мозга. Афферентные входы и нисходящие пути. Симптоматика, связанная с нарушением функционирования этих отделов головного мозга.

23. Строение и функции мозжечка и базальных ядер. Афферентные входы и нисходящие пути. Симптоматика, связанная с нарушением функционирования этих отделов головного мозга.

24. Кора больших полушарий головного мозга. Структура нейрональной организации. Основные зоны коры больших полушарий. Строение и функции лимбической системы.

ФИЗИОЛОГИЯ РЕЦЕПТОРОВ

25. Свойства рецепторного потенциала (РП), отличия РП от потенциала действия возбудимой клетки. Кодирование интенсивности стимула в сенсорных рецепторах и при передаче сигнала. Адаптация рецепторов. Тонические и фазические рецепторы. Схема (принцип) латерального торможения, его физиологическое значение. Закон Вебера-Фехнера.

26. Классификация рецепторов. Адекватность стимула, специфичность рецепторов. Первичные и вторичные рецепторы: локализация в организме человека и функции.

ЭНДОКРИННАЯ РЕГУЛЯЦИЯ ФУНКЦИЙ ОРГАНИЗМА

27. Особенности гуморальной регуляции. Механизмы, обеспечивающие адрессность гормональных влияний клеткам-мишеням. Химическая природа основных групп гормонов, особенности их рецепции клетками-мишенями. Связь нервных и гормональных механизмов регуляции функций организма.

28. Надпочечники, поджелудочная железа, щитовидная и околощитовидные железы. Секретируемые ими гормоны и их роль в регуляции функций организма.

29. Половые железы. Секретируемые ими гормоны и их роль в регуляции функций организма. Последствия нарушений секреторной активности половых желез.

30. Гипоталамо-гипофизарный комплекс. Отделы гипофиза и секретируемые ими гормоны. Регуляция секреторной функции гипофиза гипоталамусом. Гипоталамус как центр интеграции вегетативных, соматических и гормональных регуляторных механизмов.

Читайте также: