Контрольные точки клеточного цикла

Обновлено: 06.05.2024

Из предыдущих курсов мы уже узнали о основных фазах клеточного цикла, митоза и мейоза. Но по мере того, как клетки движутся по клеточному циклу, перескакивают ли они бесконтрольно с одной фазы в другую? Если это раковые клетки, ответ может быть да.

Нормальные клетки, однако, проходят клеточный цикл регулируемым образом, используя информацию о своем внутреннем состоянии и сигналы из окружающей среды, они решают, следует ли продолжать деление. Это гарантирует, что клетки не станут делиться в неблагоприятных условиях (например, когда их ДНК повреждена или в ткани или органе нет места для большего количества клеток).

Контрольные точки клеточного цикла

Контрольная точка — это стадия в эукариотическом клеточном цикле, на которой клетка анализирует внутренние и внешние сигналы и «решает», стоит ли продвигаться дальше в процессе деления.

Существует несколько контрольных точек, но мы рассмотрим три наиболее важных из них:

· G1 контрольная точка, которую клетка проходит перед переходом из фазы G1 в фазу S.
· G2 контрольная точка,которую клетка проходит перед переходом из фазы G2 в фазу M.
· Контрольная точка шпинделя, при переходе из метафазы в анафазу.


Схема клеточного цикла с отмеченными контрольными точками.
Контрольная точка G1 находится в конце фазы G1 (близко к переходу G1 / S).
Контрольная точка G2 находится в конце фазы G2 (близко к переходу G2 / M).
Контрольная точка шпинделя находится на середине фазы M, а точнее, на переходе от метафазы к анафазе.

Контрольная точка G1

Контрольная точка G1 является основной точкой, в которой клетка должна сделать выбор, делиться ей или нет. Как только клетка проходит G1-контрольную точку и вступает в S -фазу, процесс деления запускается и может прерваться только в случае непредвиденных проблем, таких как повреждение ДНК или ошибки репликации. В остальных случаях клетка, которая прошла через контрольную точку G1, продолжит движение по клеточному циклу и в результате образует две дочерние клетки.

На контрольной точке G1 клетки решают, следует ли продолжить деление, основываясь на таких факторах, как:

· Размер клетки
· Питательные вещества
· Факторы роста
· Повреждение ДНК

В контрольной точке G1 клетка проверяет, являются ли внутренние и внешние условия подходящими для деления. Вот некоторые из факторов, которые может оценить клетка:

· Размер. Достаточно ли велика клетка для деления?
· Питательные вещества. Достаточно ли у клетки запасов энергии или доступных питательных веществ для деления?
· Молекулярные сигналы. Получает ли клетка положительные сигналы (например, факторы роста) от соседей?
· Целостность ДНК. Повреждена ли ДНК?

Это не единственные факторы, которые могут повлиять на прохождение через контрольную точку G1, и то, какие факторы являются наиболее важными, зависит от типа клетки. Например, некоторые клетки также нуждаются в механических сигналах (таких как соединение с поддерживающей сетью — внеклеточным матриксом), чтобы начать деление.

Если клетка не получает сигналов, нужных для прохождения контрольной точки G1, она может выйти из клеточного цикла и войти в состояние покоя под названием фаза G0. После чего в некоторых случаях клетки могут либо постоянно оставаться в фазе G0, либо возобновить деление, если условия поменяются на благоприятные.

Контрольная точка G1

Контрольная точка G1 находится в конце фазы G1, до перехода в S-фазу.

Если клетка не проходит контрольную точку G1, она может «выйти из клеточного цикла» и перейти в состояние покоя, называемое G0, из которого она может впоследствии повторно войти в G1 при соответствующих условиях.

Контрольная точка G2

Чтобы убедиться, что деление клетки пройдет успешно (клетка произведет здоровые дочерние клетки с неповрежденной ДНК), перед фазой М клетка проходит дополнительную контрольную точку — контрольную точку G2.

На этом этапе клетка проверяет:
· Целостность ДНК. Повреждена ли ДНК?
· Процесс репликации ДНК. Была ли ДНК полностью скопирована во время S-фазы?

Если обнаружены ошибки или повреждения, клеточный цикл останавливается на контрольной точке G2 для устранения неполадок. Если механизмы контрольных точек обнаруживают проблемы с ДНК, клеточный цикл останавливается, и клетка пытается либо завершить репликацию ДНК, либо восстановить поврежденную ДНК.

Если повреждение непоправимо, клетка может подвергнуться апоптозу — запрограммированной клеточной гибели [2]. Этот механизм самоуничтожения играет важную роль в профилактике рака, поскольку гарантирует, что поврежденная ДНК не передастся дочерним клеткам.

Изображение клеточного цикла с отмеченной контрольной точкой G2.

На контрольной точке G2 клетка проверяет:
· Повреждение ДНК
· Завершение репликации ДНК.

Контрольная точка шпинделя

Контрольная точка M также известна как контрольная точка шпинделя : здесь клетка проверяет, правильно ли все сестринские хроматиды прикреплены к микротрубочкам шпинделя. Поскольку разделение сестринских хроматид во время анафазы является необратимым этапом, цикл не будет продолжаться до тех пор, пока все хромосомы не будут прочно прикреплены по крайней мере к двум веретенообразным волокнам с противоположных полюсов клетки.

Как работает эта контрольная точка? Кажется, что клетки на самом деле не сканируют метафазную пластинку, чтобы подтвердить, что все хромосомы на месте. Вместо этого происходит поиск хромосом, которые находятся в неправильном месте (например, плавают в цитоплазме) [3]. Если хромосома не на своем месте, клетка приостановит митоз, предоставив время для веретена захватить беспризорную хромосому.

Изображение клеточного цикла с отмеченной контрольной точкой шпинделя

На контрольной точке шпинделя клетка проверяет:
Прикрепление хромосомы к метафазной пластинке.

Как на самом деле работают контрольные точки?

В этой статье дается общий обзор контроля клеточного цикла, описываются факторы, которые влияют на решение клетки приостановить или продолжить клеточный цикл на каждой из контрольных точек. Однако вам может быть интересно, какие механизмы запускают эти факторы внутри клетки, и каким образом управляется переход от одной фазы клеточного цикла к следующей.

Общий ответ заключается в том, что внутренние и внешние сигналы запускают сигнальные пути внутри клетки, которые активируют или инактивируют набор основных белков, которые продвигают клеточный цикл вперед. Вы можете узнать больше об этих белках и увидеть примеры того, как на них влияют такие сигналы, как повреждение ДНК, в статье о регуляторах клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжает «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК, и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

9.Стадии мейоза.

Мейо́з или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

Лептотена или лептонема — упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

Зиготена или зигонема — происходит конъюгация — соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

Пахитена или пахинема — (самая длительная стадия) — в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер — обмен участками между гомологичными хромосомами.

Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

Метафаза I — Завершается формирование веретена деления. Бивалентные хромосомы выстраиваются вдоль экватора клетки.

Анафаза I — микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

У организмов, размножающихся половым путем, предотвращается удвоение числа хромосом в каждом поколении, так как при образовании половых клеток мейозом происходит редукция числа хромосом.

Мейоз создает возможность для возникновения новых комбинаций генов (комбинативная изменчивость), так как происходит образование генетически различных гамет.

Редукция числа хромосом приводит к образованию «чистых гамет», несущих только один аллель соответствующего локуса.

Расположение бивалентов экваториальной пластинки веретена деления в метафазе 1 и хромосом в метафазе 2 определяется случайным образом. Последующее расхождение хромосом в анафазе приводит к образованию новых комбинаций аллелей в гаметах. Независимое расхождение хромосом лежит в основе третьего закона Менделя.

Клеточный цикл контролируется путем взаимодействия трех типов
белков: циклинзависимые киназы (Cdk), циклины
- белки, взаимодействующие с Cdk c образованием комплексов
и ингибиторы комплексов Cdk-циклин.

Циклинзависимые киназы (Cdk) - ферменты фосфорилирующие другие
белки, изменяют их функцию. Клеточный цикл контролируется изменением
активности Cdk, которая регулируется периодическим образованием
и распадом их регуляторных субъединиц - циклинов. Смена синтезов
и разрушений различных циклинов обеспечивает переходы и протекания
различных фаз клеточного цикла. При этом концентрация Cdk
постоянна в течении всего клеточного цикла. В разные фазы
клеточного цикла образуются разные циклины, которые связываясь
с Cdk образуют различные Cdk-циклиновые комплексы. Эти комплексы
регулируют разные фазы клеточного цикла и поэтому называются
G1-, G1/S- , S- и М-Cdk (рис.1).

рис.1 Концентрации различных комплексов Cdk-циклин
в клеточном цикле.

Контрольные точки клеточного цикла

1. Точка выхода из G1-фазы, называемая
Старт - у млекопитающих и точкой рестрикции
у дрожжей. После перехода через точку рестрикции R в конце
G1 наступление S становится необратимым, т.е. запускаются
процессы ведущие к следующему делению клетки.
2.
Точка S - проверка точности репликации.
3.
Точка G2/M-перехода - проверка завершения репликации.

4. Переход от метафазы к анафазе митоза.

Контроль различных этапов клеточного
цикла


ARC подавляет S- и M-циклины и не подавляет G1/S-циклины.

В G1-фазе работают различные ингибиторы Cdk.

Внутренние и внешнии сигналы приводят к образованию G1/S-
и S-циклинов и активации G1/S-Cdks.

Активность G1/S-Cdk увеличивается потому что G1/S циклины
не атакуются APC и потому что G1

Cdk ингибиторы так же не действуют на G1/S-Cdks
(у мух и дрожжей) или удаляются от G1/S-Cdks другими
механизмами (у млекопитающих).

S-Cdk инактивирует ингибиторы Cdk и подавляет ARC, которые
в G1-фазе подавляли S-Cdk. S-Cdk фосфорилируют
различные белки, что ведет к началу дупликации ДНК и S-фазы.
После начала S-фазы S/G1-Cdk обеспечивают собственную
инактивацию.

В конце S-фазы, в G2-фазе начинают накапливаться
М-Cdk, приводящая к вступлению клетки в митоз. М-Cdk активирует
ARC-комплекс, управляющий метафазно-анафазным переходом. Основная
функция ARC-комплекса состоит в разрушении когезинов, приводящее
к началу расхождения хромосом

Циклин зависимые киназы Cdk1-5 в клетках млекопитающих

Cdks активируется при связывании с циклинами (так же как фосфориляция
и дефосфориляция киназ). Cdks-фосфорилируют белки участвующие
в кл цикле

M-phase Cdk (M-Cdk) запускают каскад белковых фосфориляций,
запускающих М-фазу к.ц. (конденсация хромосом, разрушение
ядра, перестройка АГ иЭР, потеря адгезии с большинством других
клеток и внеклеточному матриксу, реорганизация цитоскелета)

anaphase-promoting complex (APC) регулятор митоза - инициация
разделения и расхождения хромосом и инактивация М-Cdk в конце
митоза

При выходе из G0 под действием факторов роста начинает
синтезироваться Cdk2-циклинD: распознает в-ва, регулирующие
ферменты синтеза белков, необходимых для репликации ДНК. В
это же время выявляются Cdk4-циклинD, и Cdk5циклинD

циклин-cdks
запускает М-стадию кц, деградация циклина снижает активность
cdks

Cdk2-циклинE появляется в G1 и достигает max
на границе G1-S, после чего его концентрация
резко снижается

Cdk2-циклинА появляется в промежутке G1-S и присутствует
в высокой концентрации на протяжении S

Сdk2-циклинB в конце G2 до М - резко разрушается

в каждой стадии синтезируются свои циклины M-циклины запускают
события митоза, G1/S-циклины - связывают цзк
в конце G1 подготавливает кл к S-фазе, S-циклины
- связывают цзк, запуская репликацию, G1-циклины
обеспечивают прохождение через точку рестрикции.

Регуляция репликации

Перед началом репликации Sc ORC-комплекс (origin recognition
complex) садится на ori - точку начала репликации. Cdc6 представлен
во всем клеточном цикле, но его концентрация возрастает вначале
G1, где он связывается c ОRC комплексом, к которому затем
присоединяются Mcm белки с образованием pre-replicative complex
(pre-RC). После сборки pre-RC клетка готова к репликации.

Для инициации репликации S-Cdk соединяется с протеинкиназой
(?), которая фосфорилирует pre-RC. При этом Cdc6 диссоциирует
от ОRC после начала репликации и фосфорилируется, после чего
убиквитинируется SCF и деградирует. Изменения в pre-RC препятствуют
повторному запуску репликации. S-Cdk так же фосфорилирует
некоторые Mcm белковые комплексы, что запускает их экспорт
из ядра. Последующая дефосфориляция белков вновь запустит
процесс образования pre-RC.

Регуляция митоза

В эмбриональных клетках синтез М-циклина постоянен во всем
клеточном цикле и накопление его происходит из-за уменьшения
деградации. У большинства клеток М-циклин синтезируется во
время G2 и М-фаз. Накопление циклина ведет к накоплению M-Cdk.
Cdk ингибируется, фосфорилируясь протеинкиназой Wee1. Активация
Cdc25 в поздней G2 дефосфорилирует M-Cdk, так же происходит
репрессия Wee1. Две протеинкиназы фосфорилируют Cdc25 - Polo
kinase и M-Cdk. M-Cdk так же фосфорилирует и ингибирует Wee1.
Способность M-Cdk активировать свой собственный активатор
(Cdc25) и ингибировать свой собственный ингибитор (Wee1) предполагает,
что активация M-Cdk в митозе резко усиливается при наличии
такой позитивной обратной связи. Малое количество активированных
Cdc25 активируют M-Cdk, которые активирует еще больше Cdc25
и супрессируют Wee1. Это приводит к большей дефосфориляции
M-Cdk и активации и тд. Такой механизм обеспечивает полную
активацию всех M-Cdk

Фосфорилирование ламинов M-Cdk приводит к их деградации. М-Cdk
фосфорилирует несколько субъединиц конденсинов, запуская конденсацию
хромосом.

M-Cdk фосфорилирует различные белки, запуская реорганизацию
микротрубочек и другие события ведущие к организации веретена
деления.

Циклин-зависимые
киназы

G1/S, S, возможно М

В животных клетках имеются, по крайней мере, 7 различных
Cdk. Cdk1,2,4,6 напрямую участвуют в регуляции клеточного
цикла, тогда как остальные фосфорилируют другие Cdk и называются
Cdk-активирующие киназы (CAK).

Cdk7,8,9 являются регуляторами РНК полимеразы II. Cdk5 участвует
в дифференцировке нервных клеток.

У дрожжей Sc и Sp все события клеточного цикла контролируются
одной Cdk1. У многоклеточных организмов события контролируются
Cdk1 и Cdk2. Также у высших эукариот имеются Cdk4 и Cdk6
которые регулируют клеточный цикл в ответ на внеклеточные
сигналы.

Cdk фосфорилируют сотни различных белков по сериновым (S)
или треониновым (T) аминокислотным остаткам. Cdk узнает
мотиф другого белка по которому необходимо фосфорилировать:
[S/T*]PX[K/R], где S/T*- место фосфорилирования, X - любая
аминокислота, K/R-основные аминокислоты лизин (K) или аргинин
(R).

В отсутствии циклина активный центр Cdk заблокирован.

Cdk состоит из нескольких доменов: Т-петля (инактивирующая
петля) - закрывает активный центр в отсутствии циклина.
L12 helix, PSTAIRE helix.

Циклины

Вид G1 G1/S S M
S.cerevisiae Cln3

Циклины - цитоплазматические белки. Разрушение циклинов
происходит в протеосомах (см. обзор Протеасомы). Циклин
B - белок киназный домен, регуляторная субъединица. Начинает
синтезироваться в G1, достигает max в S и ранней профазе
и быстро разрушается в начале анафазы М. Когда концентрация
регуляторной субъединицы возрастает - активируется киназный
домен. Фосфорилирование специфических белков приводит к
компактизации х-м, разрушению ядерной об-ки и сборке веретена.

Циклин фосфорилирует сериновые и треониновые остатки ламинов
вызывая их деполимеризацию, фосфорилирует гистон H1, участвует
в фосфорилировании блокирующим везикулярный транспорт -
разрушение ЭПР и АГ, фосфорилирует участок легкой цепи миозина,
ингибируя АТФ-азную активность и связывание с F-актином
- блокировка цитокинеза в раннем митозе. После разрушения
циклина белки дефосфорилируются.

Циклины - активаторы Cdk. Циклины, так же как и Cdk вовлечены
в различные, помимо контроля клеточного цикла, процессы.
Циклины разделяются на 4 класса в зависимости от времени
действия в клеточном цикле: G1/S, S, M и G1 циклины.

G1/S циклины (Cln1 и Cln2 у S. cerevisiae, циклин E у позвоночных)
достигает максимальной концентрации в поздней G1-фазе и
падает в S-фазе.

G1/S cyclin-Cdk комплекс запускает начало репликации ДНК
выключая различные системы подавляющие S-phase Cdk в G1-фазе

G1/S циклины также инициируют дупликацию центросом у позвоночных,
образование веретенного тела у дрожжей. Падение уровня G1/S
сопровождается увеличением концентрации S циклинов (Clb5,
Clb6 у Sc и циклин A у позвоночных), который образует S
циклин-Cdk комплекс который напрямую стимулирует ДНК репликацию.
Уровень S циклина остается высоким в течении всей S, G2-фаз
и начала митоза, где помогает началу митозу в некоторых
клетках.

М-циклины (Clb1,2,3 и 4 у Sc, циклин B у позвоночных) появляется
последним. Его концентрация увеличивается, когда клетка
переходит к митозу и достигает максимума в метафазе. М-циклин-Cdk-комплекс
включает сборку веретена деления и выравнивание сестринских
хроматид. Его разрушение в анафазе приводит к выходу из
митоза и цитокиезу.

G1 циклины (Cln3 у Sc и циклин D у позвоночных) помогает
координировать клеточный рост с входом в новый клеточный
цикл. Они необычны, так как их концентрация не меняется
от фазы клеточного цикла, а меняется в ответ на внешние
регуляторные сигналы роста.

APC комплекс (Anaphase-Promoting Complex)


Убиквитин лигаза митоза - APC состоит из 12 субъединиц и регулирует
различные процессы митоза, такие как разделение сестринских
хроматид (запускает разрушение когезинов), переход к анафазе,
анафазное расхождение хромосом, выход из митоза, разрешение
S-фазы. ARC разрушает митотический циклин B.

Имеются различные белки регулирующие активность ARC комплекса,
такие как Mps1, Bub1, Bub3, BubR1, Mad1 и Mad2. Они ингибируют
ARC комплекс, что ведет к остановке клеточного цикла в метафазе
митоза.

Читайте также: