Метаболическая функция почек.

Обновлено: 26.05.2024

Важной стороной функции почки, которая раньше неодооценивалась, является ее участие в гомеостазе белков, углеводов и липидов. Участие почки в метаболизме органических веществ отнюдь не ограничено способностью к реабсорбции этих соединений или экскреции их избытка. В почке образуются новые и разрушаются различные пептидные гормоны, циркулирующие в крови, происходят потребление низкомолекулярных органических веществ (глюкоза, аминокислоты, свободные жирные кислоты и др.) и образование глюкозы (глюконеогенез), процессы превращения аминокислот, например глицина в серин, необходимый для синтеза фосфатидилсерина, участвующего в образовании и обмене плазматических мембран в различных органах [Wesson L., 1969; Brenner В., Rector F., 1976; Guder W., Schmidt U., 1978].

Следует разграничить понятия «метаболизм почки» и «метаболическая функция почки». Метаболизм, обмен веществ в почке, обеспечивает выполнение всех ее функций. В этом разделе не будут обсуждаться вопросы, касающиеся особенностей биохимических процессов почечных клеток. Речь пойдет только о некоторых сторонах деятельности почки, которые обеспечивают одну из ее важнейших гомеостатических функций, связанную с поддержанием стабильного уровня в жидкостях внутренней среды ряда компонентов углеводного, белкового и липидного обмена.

Участие в обмене белков

Ранее уже отмечалось, что фильтрующая мембрана клубочка практически непроницаема для альбуминов и глобулинов, но через нее свободно фильтруются низкомолекулярные пептиды. Тем самым в канальцы непрестанно поступают гормоны — инсулин, вазопрессин, ПГ, АКТГ, ангиотензин, гастрин и др. Расщепление до аминокислот этих физиологически активных пептидов имеет двоякое функциональное значение — в кровь поступают аминокислоты, используемые для синтетических процессов в различных органах и тканях, и организм непрерывно освобождается от поступивших в кровоток биологически активных соединений, что улучшает точность регуляторных влияний.

Снижение функциональной способности почки к удалению этих веществ приводит к тому, что при почечной недостаточности может наступить гипергаспринемия, появляется избыток в крови ПГ (помимо увеличения его секреции). Вследствие замедления инактивации инсулина в почке у больных диабетом при развитии почечной недостаточности может снижаться потребность в инсулине. Нарушение процесса реабсорбции и расщепления низкомолекулярных белков приводит к появлению канальцевой протеинурии. При НС, наоборот, протеинурия обусловлена увеличением фильтрации белков; низкомолекулярные белки при этом по-прежнему реабсорбируются, а в мочу поступают альбумины и крупномолекулярные белки.

Канальцевая реабсорбция отдельных аминокислот, расщепление и реабсорбция полипептидов, всасывание белков путем эндоцитоза — каждый из этих процессов насыщаем, т. е. имеет свою величину Тm. Это подтверждает представление о различии механизмов всасывания отдельных категорий белков. Существенное значение имеет большая скорость фильтрации в клубочках денатурированных альбуминов по сравнению с нативными. Весьма вероятно, что это служит одним из механизмов элиминации из крови, расщепления клетками канальцев и использования аминокислот тех белков, которые изменились, стали функционально неполноценными. Есть сведения о возможности извлечения некоторых белков и полипептидов клетками нефрона из околоканальцевой жидкости и их последующего катаболизма. К ним относятся, в частности, инсулин и β2-μ-глобулин.

Таким образом, почка играет важную роль в расщеплении низкомолекулярных и измененных (в том числе денатурированных) белков. Это объясняет значение почки в восстановлении фонда аминокислот для клеток органов и тканей, в быстром устранении из крови физиологически активных веществ и сохранении для организма их компонентов.

Участие в обмене углеводов

Наряду с фильтрацией и реабсорбцией профильтровавшейся глюкозы почка не только потребляет ее в процессе обмена, но и способна к значительной продукции глюкозы. В обычных условиях скорости этих процессов равны. На утилизацию глюкозы для выработки энергии в почке идет около 13% общего потребления кислорода почкой. Глюконеогенез происходит в коре почки, а наибольшая активность гликолиза характерна для ее мозгового вещества. В процессе обмена в почке глюкоза может окисляться до СО2 или превращаться в молочную кислоту. Гомеостатическое значение ведущих биохимических путей превращения глюкозы в почке можно показать на примере метаболизма глюкозы при сдвигах КЩС.

При хроническом метаболическом алкалозе потребление почкой глюкозы возрастает в несколько раз по сравнению с хроническим метаболическим ацидозом. Существенно, что окисление глюкозы не зависит от КЩС, а увеличение pH способствует сдвигу реакций в направлении образования молочной кислоты.

Почка обладает весьма активной системой образования глюкозы; интенсивность глюконеогенеза при расчете на 1 г массы тючки значительно больше, чем в печени. Метаболическая функция почки, связанная с ее участием в углеводном обмене, проявляется в том, что при длительном голодании почки образуют половину общего количества глюкозы, поступающей в кровь. Превращение кислых предшествеников, субстратов в глюкозу, являющуюся нейтральным веществом, одновременно способствует регуляции pH крови. При алкалозе, наоборот, уменьшен глюконеогенез из кислых субстратов. Зависимость скорости и характера глюконеогенеза от величины pH отличает углеводный обмен почки от такового печени.

В почке изменение скорости образования глюкозы сопряжено с изменением активности ряда ферментов, играющих ключевую роль в глюконеогенезе. Среди них в первую очередь следует назвать фосфоенолпируваткарбоксикиназу, пируваткарбоксилазу, глюкозо-6-фосфатазу и др.

Особенно важно, что организм способен к локальному изменению активности ферментов при генерализованных реакциях. Так, при ацидозе увеличивается активность фосфонолпируваткарбоксикиназы только в коре почки; в печени активность такого же фермента не меняется. В условиях ацидоза в почке возрастает глюконеогенез преимущественно из тех предшественников, которые участвуют в образовании щавелевоуксусной кислоты (оксалацетат). С помощью фосфоенолпируваткарбоксикиназы он превращается в фосфоенолпируват (далее — d-глицеральдегид-3 РО4, фруктоза-1,6-дифосфат, фруктоза-6 РО4); наконец, глюкозу-6 РО4, из которой с помощью глюкозо-6-фосфатазы освобождается глюкоза.

Сущность активации ключевого фермента, обеспечивающего усиление образования глюкозы при ацидозе, — фосфоенолпируваткарбоксикиназы, по-видимому, заключается в том, что при ацидозе происходит превращение мономерных форм этого фермента в активную димерную форму, а также замедляется процесс разрушения фермента.

Важную роль в регуляции скорости глюконеогенеза в почке играют гормоны (ПГ, глюкагон) и медиаторы, увеличивающие образование цАМФ в клетках канальцев. Этот посредник способствует усилению процессов превращения в митохондриях ряда субстратов (глутамин, сукцинат, лактат и др.) в глюкозу. Важное значение в регуляции имеет содержание ионизированного кальция, который участвует в увеличении митохондриального транспорта ряда субстратов, обеспечивающих образование глюкозы.

Превращение различных субстратов в глюкозу, поступающую в общий кровоток и доступную для утилизации в различных органах и тканях, свидетельствует о том, что почке присуща важная функция, связанная с участием в энергетическом балансе организма.

Интенсивная синтетическая активность некоторых клеток почки зависит, в частности, от состояния углеводного обмена. В почке высокая активность глюкозо-6-фосфатдегидрогеназы свойственна клеткам macula densa, проксимального канальца и части петли Генле. Этот фермент играет важнейшую роль в окислении глюкозы по гексозомонофосфатному шунту. Он активизируется при уменьшении содержания натрия в организме, что приводит, в частности, к интенсификации синтеза и секреции ренина.

Почка оказалась основным органом окислительного катаболизма инозитола. В ней миоинозитол окисляется в ксилулозу и затем через ряд стадий — в глюкозу. В ткани почки синтезируется фосфатидилинозитол — необходимый компонент плазматических мембран, в значительной степени определяющий их проницаемость. Синтез глюкуроновой кислоты важен для образования кислых мукополисахаридов; их много в интерстиции внутреннего мозгового вещества почки, что существенно для процесса осмотического разведения и концентрирования мочи.

Участие в обмене липидов

Свободные жирные кислоты извлекаются почкой из крови и их окисление в значительной степени обеспечивает функцию почки. Так как свободные жирные кислоты связаны в плазме с альбумином, то они не фильтруются, а поступают в клетки нефрона со стороны межклеточной жидкости; перенос через мембрану (клетки связан со специальным механизмом транспорта. Окисление этих соединений происходит больше в коре почки, чем в ее мозговом веществе.

Помимо участия свободных жирных кислот в энергетическом обмене почки, в ней происходит образование триацилглицеринов. Свободные жирные кислоты быстро включаются в фосфолипиды почки, играющие важную роль в различных транспортных процессах. Роль почки в липидном обмене состоит в том, что в ее ткани свободные жирные кислоты включаются в состав триацилглицеринов и фосфолипидов и в виде этих соединений участвуют в циркуляции.

Метаболическая функция почек

Почки участвуют в обмене белков, липидов и углеводов. Данная функция обусловлена участием почек в обеспечении постоянства концентрации в крови ряда физиологически значимых органических веществ. В почечных клубочках фильтруются низкомолекулярные белки, пептиды. В проксимальном отделе нефрона они расщепляются до аминокислот или дипептидов и транспортируют через базальную плазматическую мембрану в кровь. При заболеваниях почек эта функция может нарушаться. Почки способны синтезировать глюкозу (глюконеогенез). При длительном голодании почки могут синтезировать до 50% от общего количества глюкозы, образующейся в организме и поступающей в кровь. Для энерготрат почки могут использовать глюкозу или свободные жирные кислоты. При низком уровне глюкозы в крови клетки почки в большей степени расходуют жирные кислоты, при гипергликемии преимущественно расщепляется глюкоза. Значение почек в липидном обмене состоит в том, что свободные жирные кислоты могут в клетках почек включаться в состав триацилглицерина и фосфолипидов и в виде этих соединений поступать в кровь.

Регуляция деятельности почек

В историческом плане представляют интерес опыты, проводившиеся с раздражением или перерезкой эфферентных нервов, иннервирующих почки. При этих воздействиях диурез изменялся незначительно. Он мало изменялся, если почки пересаживали на шею и артерию почки подшивали к сонной артерии. Однако даже в этих условиях удавалось выработать условные рефлексы на болевое раздражение или на водную нагрузку, а также диурез изменялся при безусловно-рефлекторных воздействиях. Эти опыты дали основание предположить, что рефлекторные влияния на почки осуществляются не столько через эфферентные нервы почек (они сравнительно мало влияют на диурез), а происходит рефлекторное выделение гормонов (АДГ, альдостерона) и они оказывают непосредственное влияние на процесс диуреза в почках. Поэтому есть все основания в механизмах регуляции мочеобразовния выделить следующие виды: условно-рефлекторная, безусловно-рефлекторная и гуморальная.

Почка служит исполнительным органом в цепи различных рефлексов, обеспечивающих постоянство состава и объема жидкостей внутренней среды. В ЦНС поступает информация о состоянии внутренней среды, происходит интеграция сигналов и обеспечивается регуляция деятельности почек. Анурия, наступающая при болевом раздражении, может быть воспроизведена условнорефлекторным путем. Механизм болевой анурии основан на раздражении гипоталамических центров, стимулирующих секрецию вазопрессина нейрогипофизом. Наряду с этим усиливаются активность симпатической части нервной системы и секреция катехоламинов надпочечниками, что и вызывает резкое уменьшение мочеотделения вследствие как снижения клубочковой фильтрации, так и увеличения канальцевой реабсорбции воды.

Не только уменьшение, но и увеличение диуреза может быть вызвано условнорефлекторным путем. Многократное введение воды в организм собаки в сочетании с действием условного раздражителя приводит к образованию условного рефлекса, сопровождающегося увеличением мочеотделения. Механизм условнорефлекторной полиурии в данном случае основан на том, что от коры больших полушарий поступают импульсы в гипоталамус и уменьшается секреция АДГ. Импульсы, поступающие по адренергическим волокнам, стимулируют транспорт натрия, а по холинергическим - активируют реабсорбцию глюкозы и секрецию органических кислот. Механизм изменения мочеобразования при участии адренергических нервов обусловлен активацией аденилатциклазы и образованием цАМФ в клетках канальцев. Катехоламинчувствительная аденилатциклаза имеется в базолатеральных мембранах клеток дистального извитого канальца и начальных отделов собирательных трубок. Афферентные нервы почки играют существенную роль как информационное звено системы ионной регуляции, обеспечивают осуществление рено-ренальных рефлексов. Что касается гуморально-гормональной регуляции мочеобразования, то об этом подробно было изложено выше.

Инкреторная функция почек

В почках вырабатывается несколько биологически активных веществ, позволяющих рассматривать ее как инкреторный орган. Гранулярные клетки юкстагломерулярного аппарата выделяют в кровь ренин при уменьшении артериального давления в почке, снижении содержания натрия в организме, при переходе человека из горизонтального положения в вертикальное. Уровень выброса ренина из клеток в кровь изменяется и в зависимости от концентрации Na+ и С1- в области плотного пятна дистального канальца, обеспечивая регуляцию электролитного и клубочково-канальцевого баланса. Ренин синтезируется в гранулярных клетках юкстагломерулярного аппарата и представляет собой протеолитический фермент. В плазме крови он отщепляет от ангиотензиногена, находящегося главным образом во фракции α2-глобулина, физиологически неактивный пептид, состоящий из 10 аминокислот, — ангиотензин I. В плазме крови под влиянием ангиотензинпревращающего фермента от ангиотензина I отщепляются 2 аминокислоты, и он превращается в активное сосудосуживающее вещество ангиотензин II. Он повышает артериальное давление благодаря сужению артериальных сосудов, усиливает секрецию альдостерона, увеличивает чувство жажды, регулирует реабсорбцию натрия в дистальных отделах канальцев и собирательных трубках. Все перечисленные эффекты способствуют нормализации объема крови и артериального давления.

В почке синтезируется активатор плазминогена — урокиназа. В мозговом веществе почки образуются простагландины. Они участвуют, в частности, в регуляции почечного и общего кровотока, увеличивают выделение натрия с мочой, уменьшают чувствительность клеток канальцев к АДГ. Клетки почки извлекают из плазмы крови образующийся в печени прогормон — витамин D3 и превращают его в физиологически активный гормон — активные формы витамина D3. Этот стероид стимулирует образование кальцийсвязывающего белка в кишечнике, способствует освобождению кальция из костей, регулирует его реабсорбцию в почечных канальцах. Почка является местом продукции эритропоэтина, стимулирующего эритропоэз в костном мозге. В почке вырабатывается брадикинин, являющийся сильным вазодилататором.

Почки участвуют в обмене белков, липидов и углеводов. Не следует смешивать понятия «метаболизм почек», т. е. процесс обмена веществ в их паренхиме, благодаря которому осуществляются все формы деятельности почек, и «метаболическая функция почек». Данная функция обусловлена участием почек в обеспечении постоянства концентрации в крови ряда физиологически значимых органических веществ. В почечных клубочках фильтруются низкомолекулярные белки, пептиды. Клетки проксимального отдела нефрона расщепляют их до аминокислот или дипептидов и транспортируют через базальную плазматическую мембрану в кровь. Это способствует восстановлению в организме фонда аминокислот, что важно при дефиците белков в рационе. При заболеваниях почек эта функция может нарушаться. Почки способны синтезировать глюкозу (глюконеогенез). При длительном голодании почки могут синтезировать до 50 % от общего количества глюкозы, образующейся в организме и поступающей в кровь. Почки являются местом синтеза фосфатидилинозита — необходимого компонента плазматических мембран. Для энерготрат почки могут использовать глюкозу или свободные жирные кислоты. При низком уровне глюкозы в крови клетки почки в большей степени расходуют жирные кислоты, при гипергликемии преимущественно расщепляется глюкоза. Значение почек в липидном обмене состоит в том, что свободные жирные кислоты могут в клетках почек включаться в состав триацилглицерина и фосфолипидов и в виде этих соединений поступать в кровь.

Принципы регуляции реабсорбции и секреции веществ в клетках почечных канальцев

Одной из особенностей работы почек является их способность к изменению в широком диапазоне интенсивности транспорта различных веществ: воды, электролитов и неэлектролитов. Это является непременным условием выполнения почкой ее основного назначения — стабилизации основных физических и химических показателей жидкостей внутренней среды. Широкий диапазон изменения скорости реабсорбции каждого из профильтровавшихся в просвет канальца веществ, необходимых для организма, требует существования соответствующих механизмов регуляции функций клеток. Действие гормонов и медиаторов, влияющих на транспорт ионов и воды, определяется изменением функций ионных или водных каналов, переносчиков, ионных насосов. Известно несколько вариантов биохимических механизмов, с помощью которых гормоны и медиаторы регулируют транспорт веществ клеткой нефрона. В одном случае происходит активирование генома и усиливается синтез специфических белков, ответственных за реализацию гормонального эффекта, в другом случае изменение проницаемости и работы насосов происходит без непосредственного участия генома.

Сравнение особенностей действия альдостерона и вазопрессина позволяет раскрыть сущность обоих вариантов регуляторных влияний. Альдостерон увеличивает реабсорбцию Na+ в клетках почечных канальцев. Из внеклеточной жидкости альдостерон проникает через базальную плазматическую мембрану в цитоплазму клетки, соединяется с рецептором, и образовавшийся комплекс поступает в ядро (рис. 12.11). В ядре стимулируется ДНК-зависимый синтез тРНК и активируется образование белков, необходимых для увеличения транспорта Na+. Альдостерон стимулирует синтез компонентов натриевого насоса (Na+, К+-АТФазы), ферментов цикла трикарбоновых кислот (Кребса) и натриевых каналов, по которым Na+ входит в клетку через апикальную мембрану из просвета канальца. В обычных, физиологических, условиях одним из факторов, ограничивающих реабсорбцию Na+, является проницаемость для Na+ апикальной плазматической мембраны. Возрастание числа натриевых каналов или времени их открытого состояния увеличивает вход Na в клетку, повышает содержание Na+ в ее цитоплазме и стимулирует активный перенос Na+ и клеточное дыхание.

Увеличение секреции К+ под влиянием альдостерона обусловлено возрастанием калиевой проницаемости апикальной мембраны и поступления К из клетки в просвет канальца. Усиление синтеза Na+, К+-АТФазы при действии альдостерона обеспечивает усиленное поступление К+ в клетку из внеклеточной жидкости и благоприятствует секреции К+.

Другой вариант механизма клеточного действия гормонов рассмотрим на примере АДГ (вазопрессин). Он взаимодействует со стороны внеклеточной жидкости с V2-рецептором, локализованным в базальной плазматической мембране клеток конечных частей дистального сегмента и собирательных трубок. При участии G-белков происходит активация фермента аденилатциклазы и из АТФ образуется 3',5'-АМФ (цАМФ), который стимулирует протеинкиназу А и встраивание водных каналов (аквапоринов) в апикальную мембрану. Это приводит к увеличению проницаемости для воды. В дальнейшем цАМФ разрушается фосфодиэстеразой и превращается в 3'5'-АМФ.

Метаболическая функция почек.

Ткани и органы. Почки

Эндокринная функция почек

323

А. Гормоны почек

Наряду с экскреторной и метаболической функциями почки выполняют важные эндокринные функции. Почки являются местом образования эритропоэтина и кальцитриола , они принимают активное участие в образовании гормона ангиотензина , секретируя фермент ренин.

Кальцитриол (1α,25-дигидроксихолекальциферол) является производным стероидного гормона и контролирует обмен кальция. Этот гормон образуется в почках из кальцидиола путем гидроксилирования по С-1. Активность гидроксилазы (кальцидиол-1-монооксигеназы [ 1 ]) регулируется паратгормоном (паратирином) (ПТГ).

Эритропоэтин — полипептидный гормон, в основном образуется в почках и печени. Вместе с другим фактором, так называемым «колонийстимулирующим фактором» (КСФ, см. с. 378), этот гормон контролирует дифференцировку стволовых клеток костного мозга. Секреция эритропоэтина стимулируется при гипоксии (pO 2 ↓). В течение нескольких часов гормон обеспечивает превращение недифференцированных клеток костного мозга в эритроциты, и концентрация эритроцитов в крови увеличивается. Нарушение функции почек ведет к снижению секреции эритропоэтина и заболеванию анемией. В настоящее время почечная анемия может быть компенсирована за счет эритропоэтина, получаемого методами генной инженерии.

Б. Система ренин-ангиотензин

Ренин [ 2 ] — это фермент аспартил-протеиназа (см. с. 178). Фермент образуется в почках в форме предшественника (проренина), после расщепления последнего образовавшийся ренин секретируется в кровь. В крови субстратом ренина является ангиотензиноген — гликопротеин плазмы крови из фракции α 2 -глобулина (см. рис. 271), синтезирующийся в печени. Отщепляющийся декапептид носит название ангиотензин I . При действии пептидилдипептидазы A [ 3 ] [ «ангиотензинконвертирующего фермента" [АКФ (АСЕ)], присутствующей в мембране кровеносных сосудов, особенно в легких, он превращается в ангиотензин II .

Этот октапептид является гормоном и одновременно нейромедиатором. Ангиотензин II быстро расщепляется под действием пептидазы (так называемой ангиотензиназы [ 4 ]), присутствующей во многих тканях. Полупериод существования (биохимический полупериод) ангиотензина II составляет всего 1 мин.

Уровень ангиотензина II в крови определяется скоростью секреции ренина из почек. Местом образования ренина являются клетки юкстагломерулярного аппарата, которые секретируют ренин в ответ на уменьшение кровенаполнения приносящей клубочковой альвеолы и повышение концентрация ионов Na + в дистальном отделе нефрона.

Действие ангиотензина II. Ангиотензин II взаимодействует с мембранными рецепторами почек, головного мозга, гипофиза, коры надпочечников, стенок кровеносных сосудов и сердца. Благодаря выраженному суживающему действию на сосуды он повышает кровяное давление, в почках способствует уменьшению экскреции ионов Na + и воды. В головном мозге и нервных окончаниях (пластинках аксонов) симпатической нервной системы действие ангиотензина II вызывает повышение тонуса (нейромедиаторное действие). Он активирует центр жажды. В гипофизе он стимулирует секрецию вазопрессина ( адиуретина ) и кортикотропина [АКТГ (ACTH)]. В коре надпочечников ангиотензин II стимулирует биосинтез и секрецию альдостерона , который в почках способствует уменьшению экскреции натрия и воды. Разнообразное действие ангиотензина II прямо или косвенно ведет к повышению кровяного давления и уменьшению выведения из организма натрия и воды.

На эту важную систему гормональной регуляции кровяного давления, точнее на некоторые ее звенья, можно воздействовать с помощью ингибиторов, например:

- с помощью субстратных аналогов ангиотензиногена ингибировать ренин;

- конкурентно ингибировать фермент АКФ [ 3 ] с помощью субстратных аналогов ангиотензина II. Кроме того, АКФ может расщеплять другие сигнальные пептиды крови, например брадикинин;

- блокировать рецепторы ангиотензина с помощью антагонистов пептидных гормонов.

315

А. Основное назначение почек

Основной функцией почек является выведение из организма воды и водорастворимых веществ (конечных продуктов обмена веществ) ( 1 , см. рис. 317). С экскреторной функцией тесно связана функция регуляции ионного и кислотно-основного равновесия внутренней среды организма ( гомеостатическая функция , 2 , см. рис. 319, 321). Обе функции контролируются гормонами. Кроме того, почки выполняют эндокринную функцию, принимая непосредственное участие в синтезе многих гормонов ( 3 , см. с. 323). Наконец, почки участвуют в процессах промежуточного метаболизма ( 4 ), особенно в глюконеогенезе и расщеплении пептидов и аминокислот (см. с. 157).

Через почки проходит очень большой объем крови: 1500 л в сутки. Из этого объема отфильтровывается 180 л первичной мочи. Затем объем первичной мочи существенно снижается за счет реабсорбции воды, в итоге суточный выход мочи составляет 0,5-2,0 л.

Б. Процесс мочеобразования

Функциональной (и структурной) единицей почек является нефрон , в почке человека содержится примерно 1 млн нефронов. Процесс мочеобразования в нефронах складывается из трех этапов.

Ультрафильтрация (гломерулярная или клубочковая фильтрация). В клубочках почечных телец из плазмы крови в процессе ультрафильтрации образуется первичная моча, изоосмотическая с плазмой крови. Поры, через которые фильтруется плазма, имеют эффективный средний диаметр 2,9 нм. При таком размере пор все компоненты плазмы крови с молекулярной массой (М) до 5 кДа свободно проходят через мембрану. Вещества с M < 65 кДа частично проходят через поры, и только крупные молекулы (М >65 кДа) удерживаются порами и не попадают в первичную мочу. Так как большинство белков плазмы крови имеют достаточно высокую молекулярную массу (М > 54 кДа) (см. с. 271) и заряжены отрицательно, они удерживаются гломерулярной базальной мембраной и содержание белков в ультрафильтрате незначительно.

Реабсорбция. Первичная моча концентрируется (примерно в 100 раз по сравнению с исходным объемом) за счет обратной фильтрации воды. Одновременно по механизму активного транспорта (см. с. 321) в канальцах реабсорбируются практически все низкомолекулярные вещества, особенно глюкоза, аминокислоты , а также большинство электролитов ( неорганических и органических ионов ). Реабсорбция аминокислот осуществляется с помощью группоспецифичных транпортных систем (переносчиков), с дефектом которых связан ряд генетически обусловленных наследственных заболеваний (цистиноз, глицинурия, синдром Хартнупа).

Секреция. Большинство веществ, подлежащих выведению из организма, поступают в мочу за счет активного транспорта в почечных канальцах. К таким веществам относятся ионы H + и К + , мочевая кислота и креатинин, лекарственные вещества, например пенициллин.

Обмен веществ. Процессы концентрирования и селективного транспорта требуют больших затрат энергии. Необходимый АТФ синтезируется за счет окисления жирных кислот, кетоновых тел и некоторых аминокислот и в меньшей степени лактата, глицерина, цитрата и глюкозы, которые содержатся в крови. В почках так же, как и в печени, может идти процесс глюконеогенеза. Субстратами служат углеродные скелеты глюкогенных аминокислот, азот которых в форме аммиака используется для регуляции рН мочи (см. рис. 319). В почках обнаружены ферменты расщепления пептидов и метаболизма аминокислот, обладающие высокой активностью (например, оксидазы аминокислот, аминооксидазы, глутаминаза).

Почечный клиренс (почечное очищение). Это наиболее используемый показатель, по которому определяют скорость почечной экскреции отдельных веществ из крови. Он определяется как объем плазмы крови, который в единицу времени может быть очищен от конкретного вещества. Клиренс инулина , полифруктазана с Μ ≈ 6 кДа, который хорошо отфильтровывается, но не подвергается активной реабсорбции и секреции, служит показателем скорости клубочковой фильтрации. Нормальное значение скорости клубочковой фильтрации, определенное по инулину, составляет 120 мл/мин * .

* Почечный клиренс достигает максимальных значений (450-600 мл/мин) у веществ, удаляемых секрецией в канальцах; клиренс минимален у веществ, хорошо фильтрующихся, но интенсивно реабсорбируемых канальцами (для натрия 1,3±0,8 мл/мин). — Прим. перев.

Читайте также: